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Abstract. We present R2U2, a novel framework for runtime monitoring of se-
curity properties and diagnosing of security threats on-board Unmanned Aerial
Systems (UAS). R2U2, implemented in FPGA hardware, is a real-time, REALIZ-
ABLE, RESPONSIVE, UNOBTRUSIVE Unit for security threat detection.
R2U2 is designed to continuously monitor inputs from GPS and the ground
control station, sensor readings, actuator outputs, and flight software status. By
simultaneously monitoring and performing statistical diagnosis, attack patterns
and post-attack discrepancies in the UAS behavior can be detected. R2U2 uses
runtime observer pairs for linear temporal logic for property monitoring and
Bayesian networks for diagnosis of security threats. We present results of simula-
tions of several attack scenarios on the NASA DragonEye UAS running ArduPi-
lot flight software.

1 Introduction
Unmanned Aerial Systems (UAS) are starting to permeate many areas in everyday life.
From toy quadcopters, to aircraft for delivery, crop dusting, public safety, and military
operations, UAS of vastly different weight, size, and complexity are used. Although
the hardware technology has significantly advanced in the past years, there are still
considerable issues to be solved before UAS can be used safely. Perhaps the biggest
concern is the integration of UAS into the national airspace (NAS), where they have
to seamlessly blend into the crowded skies and obey Air Traffic Control commands
without endangering other aircraft or lives and property on the ground [4].

A related topic, which has been vastly neglected so far, is security [24]. All sensors
and software set up to ensure UAS safety are useless if a malicious attack can cause the
UAS to crash, be abducted, or cause severe damage or loss of life. There are numerous
examples of system- and software-related UAS incidents. Often, video feeds from mil-
itary UAS flying were not encrypted, so people on the ground, with only minimal and
off-the-shelf components could see the same images as the remote UAS operator [30].
In 2013, the Iran allegedly abducted a CIA drone by jamming its command link and
spoofing GPS. Instead of returning back to the CIA base, the UAS was directed to land
in Iranian territory [5]. Video footage retrieved from that UAS later [12] provided ad-
ditional evidence of that abduction. Even large research UAS worth millions of dollars
are controlled via unencrypted RF connections; most UAS communicate over a large
number of possible channels [9], relying on the assumption that “. . . one would have to
know the frequencies” to send and receive data.
? This work was supported in part by NASA ARMD 2014 I3AMT Seedling Phase I,
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There are multiple reasons for these gaping security holes: most UAS flight com-
puters are extremely weak with respect to computing power. Thus, on-board encryption
is not possible, especially for larger data volumes as produced, for example, by on-
board cameras. Another reason is that a lot of UAS technology stems from the Hobby
RC area, where security is of low concern. Finally, security aspects have only played a
minor role in FAA regulation to date [7]. In addition, the Automatic Dependent Surveil-
lance - broadcast (ADS-B), which will be a cornerstone for Next Generation Air Traffic
Control, does not provide any authentication [25].

On a UAS, there are multiple attack surfaces: the communication link, sensor jam-
ming or spoofing, exploitation of software-related issues, and physical attacks like
catching a UAS in a net. In this paper, we focus on the communications, sensor, and
software-related security threats. Though design-time verification and validation activ-
ities can secure a number of attack surfaces, an actual attack will, most likely, happen
while the UAS is in the air. We therefore propose the use of dynamic monitoring, threat
detection, and security diagnosis.

In this paper, we extend our on-board monitoring and diagnosis framework R2U2.
Originally developed for system health management, R2U2 dynamically monitors soft-
ware and sensor traffic on-board complex systems [26,8,28]. The underlying health
model is specified using metric and linear temporal logics (MTL and LTL, respectively)
and Bayesian networks (BN). This combination of specification paradigms allows the
user to concisely express temporal relationships between sensor and software status and
signals as well as to perform probabilistic diagnostic reasoning.

In order to minimize impact on the flight software and the usually weak flight com-
puter, R2U2 is implemented using FPGA hardware. This no-overhead implementation
is designed to uphold the FAA requirements of REALIZABILITY and UNOBTRUSIVE-
NESS. To our knowledge, there are only two previous embedded hardware monitoring
frameworks capable of analyzing formal properties: P2V [15] and BusMOP [23,19].
However, P2V is a PSL to Verilog compiler that violates our UNOBTRUSIVENESS re-
quirement by instrumenting software. Like R2U2, BusMOP can monitor COTS pe-
ripherals, achieving zero runtime overhead via a bus-interface and an implementation
on a reconfigurable FPGA. However, BusMOP violates our REALIZABILITY require-
ment by reporting only property failure and handling only past-time logics whereas we
require early-as-possible reporting of future-time temporal properties passing and in-
termediate status updates. BusMOP can require up to 4 clock cycles from any event
that triggers a property resolution to executing the corresponding handler, violating our
RESPONSIVENESS requirement; R2U2 always reports in 1 clock cycle. BusMOP also
violates UNOBTRUSIVENESS by executing arbitrary user-supplied code on the occur-
rence of any property violation.

We extend R2U2 to enable the dynamic monitoring of the flight software, the com-
munication stream, and sensor values for indications of a malicious attack on the au-
topilot and, even more importantly, to be able to quickly and reliably detect post-attack
behavior of the UAS. The temporal and probabilistic health models and its FPGA im-
plementation are suited for fast detection and diagnosis of attacks and post-attack be-
havior. The separate FPGA implementation of a security extension to R2U2 described
in this paper is highly resilient to attacks, being a separate hardware entity and pro-
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grammed using VHDL. Javaid et al. [10] also analyze cyber security threats for UAS.
They simulated the effects of attacks that usually ended in a crash, focusing on identify-
ing different existing attack surfaces and vulnerabilities rather than focusing on runtime
detection or post-attack analysis. TeStID [2], ORCHIDS [21] and MONID [20] are In-
trusion Detection Systems which use temporal logic to specify attack patterns. These
security monitoring frameworks are targeted at IT systems and infrastructure.

Our contributions include:

– extending R2U2 from monitoring of safety properties of hardware [26,8], integrat-
ing hardware and software bus traffic monitoring for security threats,

– enabling on-board, real-time detection of attack scenarios and post-attack behavior,
– designing more expressive runtime reasoning than previous approaches, which is

needed for catching subtle security properties; this includes temporal logic formula
patterns and BN reasoning for probabilistic diagnostics and root cause analysis,

– detection of attack patterns rather than a specific, isolated attack or incident
– isolating monitoring and reasoning our implementation from in-flight attacks; our

FPGA implementation provides a platform for secure and independent monitoring
and diagnosis that is not re-programmable in-flight by attackers,

– demonstrating R2U2 via case studies on a real NASA DragonEye UAS, and
– implementing a novel extension of R2U2 that we release to enable others to re-

produce and build upon our work: http://temporallogic.org/research/
RV15.html

The rest of this paper is structured as follows. Section 2 provides background infor-
mation on our UAS platform, the open-source flight software, and the R2U2 framework.
Section 3 is devoted to our approach of using temporal logic monitors and BN dignostic
reasoning for detection of security threats and post-attack UAS behavior. In Section 4,
we will illustrate our approach with several small case studies on attacks through the
ground control station (GCS), attempts to hijack a UAS through an attacker GSC, and
GPS spoofing. Finally, Section 5 discusses future work and concludes.

2 Background
For this paper, we consider a simple and small UAS platform, the NASA DragonEye
(Figure 1A). With a wingspan of 45in it is a small UAS, but it shares many common-
alities with larger and more complex UAS. Figure 1B shows a high-level, generic UAS
architecture: the UAS is controlled by an on-board flight computer and the flight soft-
ware (FSW). It receives measurements from various sensors, like barometric pressure
and airspeed, GPS, compass readings, and readings from the inertial measurement unit
(IMU). Based upon this information and a flight plan, the FSW calculates the neces-
sary adjustments of the actuators (elevator, rudder, ailerons, throttle). A ground control
station (GCS) computer transmits commands and flight plans to the UAS, and receives
and displays UAS telemetry information. For autonomous missions, there is no link
between the UAS and the GCS.

Our example system uses the open-source FSW ”APM:Plane” [3], which does not
contain any security features like command and data encryption for the GCS-UAS link
per default. We nevertheless selected this FSW because it very closely resembles the

http://temporallogic.org/research/RV15.html
http://temporallogic.org/research/RV15.html
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Fig. 1. A: Photo of NASA DragonEye. B: High level system architecture of a small UAS.

architecture of similar and even larger, more complex UAS. This architecture allows us
to easily carry out white-box experiments and to study the relationship between attacks
and post-attack behavior. Results of our studies can be carried over to highly secure and
resilient flight software.

2.1 R2U2
Developed to continuously monitor system and safety properties of an UAS in flight, our
real-time R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) has been im-
plemented on an FPGA (Field Progammable Gate Array) [26,8]. Health models within
this framework [28,29] are defined are defined using Metric Temporal Logic (MTL)
[26] for expressing temporal properties and Bayesian Networks (BN) for probabilistic
and diagnostic reasoning.

Temporal Logic Monitors MTL formulas consist of propositional variables, logic op-
erators like ∧, ∨, ¬, or→, and temporal operators to express temporal relationships be-
tween events. For MTL formulas p, q, we have �p (ALWAYS p), ♦p (EVENTUALLY p),
Xp (NEXTTIME p), pUq (p UNTIL q), and pRq (p RELEASES q) with their usual se-
mantics [26]. For MTL, each of the temporal operators are accompanied by upper and
lower time bounds that express the time period during which the operator must hold.
Specifically, MTL includes the operators �[i,j] p, ♦[i,j] p, p U[i,j] q, and pR[i,j] q where
the temporal operator applies over the interval between time i and time j, inclusive, and
time steps refer to ticks of the system clock.

Bayesian Networks for Health Models In many situations, temporal logic monitoring
might come up with several violations of security and safety properties. For example, a
certain system state might have been caused by an attack or by a bad sensor. In order to
be able to disambiguate the root causes, the R2U2 framework uses Bayesian Networks
(BN) for diagnostic reasoning. BNs are directed acyclic graphs, where each node repre-
sents a statistical variable. BNs are well established in the area of diagnostic and health
management (e.g., [22,18]). Conditional dependencies between the different statistical
variables are represented by directed edges; local conditional probabilities are stored in
the Conditional Probability Table (CPT) of each node [8,27,29]. R2U2 evaluates poste-
rior probabilities, which reflect the most likely root causes at each time step.

2.2 FPGA Implementation

R2U2 is implemented in FPGA hardware. Figure 2 shows the major components: the
control subsystem, the signal processing and filtering system (SP), the runtime verifica-
tion (RV) unit, and the runtime reasoning (RR) unit. The control subsystem establishes
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the communication link to the external world to load health models and to receive health
results.
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Fig. 2. Principled R2U2 implementation on
FPGA.

Continuous signals obtained, using a read-
only interface, from the flight computer
and from communications between the flight
computer and the payload and sensor system.
These signals are filtered and discretized in
the SP unit to obtain streams of propositional
variables. The RV and RR units comprise
the proper health management hardware: RV
monitors MTL properties using pairwise ob-
servers [26]. After the temporal logic formu-
las have been evaluated, the results are transferred to the runtime reasoning (RR)
subsystem, where the compiled Bayesian network is evaluated to yield the posterior
marginals of the health model [8].

3 Our Approach to Threat-Detection

For our approach, we consider the “system” UAS (as depicted in Figure 1B) as a com-
plex feedback system. Commands, GPS readings as well as measurements of the sen-
sors are processed by the FSW on flight computer to calculate new values for the ac-
tuators (e.g., throttle, aileron, rudder, or elevator commands) and to update its internal
status.

In this paper, we assume that all malicious attacks are attempted during flight.3 Fur-
thermore, all external inputs to the UAS are received via a wireless link from the ground
control station and a GPS transmitter only. Spoofing of the compass sensor, for example,
via a strong magnetic field is outside the scope of R2U2. All attacks considered in our
study involve the wireless link from the ground control station or the GPS transmitter.
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Fig. 3. High-level architecture of R2U2

With our R2U2 framwork, we continu-
ously monitor both inputs and are capable
of identifying some attack mechanisms and
surfaces. Typical examples include denial-of-
service, sending of illegal or dangerous com-
mands, or jamming of the GPS receiver. Be-
cause, in most cases, this information does
not suffice to reliably identify an attack sce-
nario, additional supporting information is
necessary. This will be obtained from the

analysis from post-attack behavior of the UAS. Any successful attack on the UAS will
result in some unusual and undesired behavior of the UAS.

Monitoring the system inputs and the post-attack behavior are the two major tasks
of R2U2. Both monitoring tasks, however, are not independent from each other and thus
we have to model these interactions within our R2U2 framework. Typically, a certain

3 We do not model attack scenarios via compromised FSW.
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input pattern, followed by a specific behavior characterizes an attack. For example, a
strong oscillation in the aircraft movement, which was triggered by a an unusual GCS
command indicates an attack (or an irresponsible pilot). Similarly, transients in GPS
signals followed by subtle position movements would be telltales of a GPS spoofing
attack.

Figure 3 shows, how our R2U2 framework monitors the various inputs going into
the UAS system (GCS and GPS), as well as sensor/actuator signals and status of the
flight software for post-attack analysis. In the following, we will discuss attack moni-
toring and post-attack behavior monitoring, loosely following [14].

3.1 Attack Monitoring

As all attacks are initiated through the GCS or GPS inputs, we will monitor the fol-
lowing attack surfaces. Because of zero-day attack mechanisms, this list will always be
incomplete.4 Note that the occurrence of such a situation does not mean that an actual
attack is happening; other reasons like unusual flight conditions, transmission errors, or
faulty hard- or software might be the reason.

Ill-formatted and illegal commands should not be processed by the FSW. Such com-
mands could result from transmission errors or might be part of a malicious attack.
If such commands are received repeatedly a denial-of-service attack might be hap-
pening.

Dangerous commands are properly formatted but might cause severe problems or
even a crash depending of the mode the UAS is in. For example, a “reset-FSW”
command sent to the UAS, while in the air, will, most likely lead to a crash of
the UAS, because all communication and system parameters are lost. Thus, in all
likelihood, this command has been issued during a malicious attack. Other danger-
ous commands are, for example, the setting of a gain in the control loops during
flight. However, there are situations, where such a command is perfectly legal and
necessary.

Nonsensical or repeated navigation commands could point to a malicious attack. Al-
though new navigation way-points can be sent to the UAS during flight to update
its mission, repeated sending of way-points with identical coordinates, or weird/er-
roneous coordinates might be an indicator for a malicious attack.

Transients in GPS signals: since the quality of UAS navigation strongly depends on
the quality of the received GPS signals, sudden transients of signal strength and
noise ratios (Jamming-to-Noise Sensing [9]) or the number of available satellites
might give an indication of GPS spoofing or jamming.

It should be noted that these pattern do not provide enough evidence to reliably
identify an attack. Only in correspondence with a matching post-attack behavior, are
we able to separate malicious attacks from unusual, but legal command sequences. We
therefore also monitor UAS behavior.

4 http://dl.acm.org/citation.cfm?id=2382284

http://dl.acm.org/citation.cfm?id=2382284
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3.2 System Behavior Monitoring

Our R2U2 models for monitoring post-attack behavior obtain their information from
the UAS sensors, actuators, and the flight computer. In our current setting, we do not
monitor those electrical signals directly, but obtain the values of the variables carring
their pre-processed sensor readings from the FSW. This simplification, however, pre-
vents our current implementation from detecting a crash of the flight software initiated
by a malicious attack. With our R2U2 framework we are able to monitor, the following
UAS behaviors, which might (or might not be) the result of a malicious attack

Oscillations of the aircraft around any of its axes hampers the aircraft’s performance
and can lead to disintegration of the plane and subsequent crash. Pilot-induced
oscillations (PIO) in commerical aircraft have caused several severe accidents and
loss of life. Due to the increased loads on wings or control surfaces, parts of the
aircraft can be literally ripped off. In a UAS such oscillations can be caused by
issueing appropriate command sequences or by setting gains of the control loops to
bad values. Oscillations of higher frequencies can cause damage due to vibration
or can render on-board cameras inoperational.

Deviation from flight path: In the nominal case, a UAS flies from one waypoint to the
next in a straight line. Sudden deviations from such a straight line could indication
some unplanned or possibly unwelcome maneauver. The same observation holds
for sudden climbs of descents of the UAS.

Sensor Readings: Sudden changes of sensor readings or consistent drift might also be
part of a post-attack behavior. Here again, such behavior might have been caused
by, for example, a failing sensor.

Unusual software behavior like memory leaks, increased number of real-time fail-
ures, illegal numerical values can possibly point to an on-going malicious attack.
In the case of software, such a behavior might be a post-attack behavior or the
manifestation of the attack mechanism itself. Therefore, security models involving
software health are the most complex ones.

3.3 R2U2 Models

With temporal logic and BN, the specific patterns for each of the attack and behavior
monitors are captured. We also use these mechanisms to specify the temporal, causal,
and probabilistic relationsships between them. As a high-level explanation, an attack is
detected if a behavioral pattern B is observed some time after a triggering attack A has
been monitored. Obviously, there are temporal constraints to ensure that these events are
actually correlated. So, for example, an oscillation of the UAS occurs between 100-200
timesteps after the control loop parameters have been altered.

A typical formula would look like:

A→WHATEV ER(B)

KRISTIN: some formula(s) here
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3.4 Modeling Variants and Patterns

The combination of signal processing, filtering, past-time and future time MTL, and
Bayesian reasoning provides a highly expressive medium for formulating security prop-
erties.

Fig. 4. Using TL+BN Network to detect threats

Opens up many variants for concise and easy specification:

– FT logic: A results in B soon
– PT: if we observe B and A has happened not too far in the past
– ”soft” probabilistic logic with BN

specification patterns – see Kristin’s email
Another variant can be achieved by grouping related input signals. For example, we can
define groups of dangerous commads, unusual repeated commands or events like:

dangerous cmds = cmd reset ∨ cmd calibrate sensor ∨ cmd disarm . . .
unusual cmds after takeoff = cmd get params∨set params∨get waypoints . . .
unusual periodic events = cmd navigate to∨cmd mode change∨invalid packet received . . .

This enables us to directly use these preprocessed groups in temporal formulas and
feed them into a BN, therby supporting simple reuse of common patterns and assist to
create more comprehensive security models. The following example demonstrates how
we use such patterns to specify that there shall be no dangerous commands between
takeoff and landing.

�((CMD == takeoff)→ � ¬ dangerous cmds U land complete)

Kristin, does this make sense?

4 Experiments and Results

4.1 Experimental Setup
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Our experiments can be run either directly
on the UAS, on our Ironbird processor-in-
the-loop setup, which consists of the original
UAS hardware components in a LAB envi-
ronment or in a software-in-the loop simula-
tion. In all configurations, the produced data-
traces are forwarded via a UART transmis-
sion to the R2U2 framewok running on the
Parallella Board [1], a credit-card sized, low-

cost, COTS SoC-FPGA platform, where the actual monitoring is performed inside the
FPGA. An Ubuntu Linux installation on the parallella board is used for the interface
configuration and signal pre-processing, hence, inputs from other sources like I2C, SPI,
analog, etc. can be configured by loading the appropriate Linux kernel drivers. An
overview of the software-in-the-loop simulation is shown in figure 5. The UASs flight
behavior is simulated by connecting it to the open source JSBSim [11] flight dynam-
ics model. The hardware components are emulated by SITL low-level drivers, which
enables us to inject the desired behavior without the risk of damaging the aircraft dur-
ing a real testflight. The operator’s GCS is connected to the UAS via an open source
MAVLink proxy [17]. We also connect a second GCS to the proxy in order to simulate
the attackers injected MAVLink packets. Similar to the Ironbird or the UAS test-setup,
the produced traces are streamed directly to the parallella board by means of a UART
cable.

4.2 Dangerous MAV Commands

The Arduino flight software uses a standardized communication protocol to send com-
mands to the UAS and to receive data from it: the MAVLink protocol [16]. Each
MAVLink command consists of a command identifier followed by a fixed number of 0
or more parameters.

In addition to commands controlling the actual flight, the MAVLink protocol allows
the user to set-up and configure the aircraft. In particular, parameters that control the
feedback loops inside the FSW can be defined, as they need to be carefully adjusted
to match the flight dynamics of the given aircraft. It is obvious that such commands,
which substantially alter the behavior of the AC can, when given during flight, cause
dangerous behavior of the UAS and a potential crash. In 2000, a pilot of a Predator
UAS inadvertently sent a command ”Program AV EEPROM” while the UAS was in the
air. This caused all FSW parameters and information about communication frequencies
were erased on the UAS. Communication to the UAS could not be reestablished and
the UAS crashed causing a total loss $3.7M [6].

Although, many of those commands in our flight software can only be issued on
the ground using a wired connection between the GCS and the flight computer, most
gain parameters can be set even during flight for setup and fine tuning. If parameters
for the control loops are set to extreme values, the aircraft can experience oscillations
that could lead to disintegration of the UAS and subsequent crash. Therefore, such
commands, sent in midair, might be welcome targets for a malicious attack.
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In this experiment, we set up our R2U2 to capture and report such dangerous behav-
ior. Our security model consists of two parts: (a) detection that a potentially dangerous
MAV command has been issued, and (b) that a dangerous behavior (in our case, pitch
oscillation) occurs. Each of the parts seen individually does not give an indication of
an attack: MAV commands to change parameters are perfectly legal in most circum-
stances, e.g., to adjust for a specific load of the UAS. On the other hand, oscillations
can be caused by turbulence, aircraft design, or the pilot (pilot-induced-oscillations).

Only the right temporal combination of both pieces of information allows us to
deduce that a malicious command (or a very stupid pilot) caused the dangerous oscilla-
tions. Our model uses the specification FIX FORMULA

�((MAV cmd == set-parameter)→ ♦[0,1200]oscillation detected)

Oscillations can be detected by executing a Fast Fourier Transform (FFT) on the pitch
measurements and monitoring if a certain element of the power spectrum is above a
threshold.5
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Fig. 6. UPDATED FIGSA: UAS behavior after malicious setting of gain parameters. B: Oscilla-
tions have not been caused by an attack.

Figure 6A shows how such an attack occurs. The top panel shows the UAS pitch
as well as the points in time, when a “set-parameter” command has been issued. At
around t = 3000, a strong low-frequency oscillation appears that ends around t = 5000.
Shortly afterwards, a high-frequency oscillation occurs (around t = 6000−7000). Low
(red) and high (blue) frequency elements of the power spectrum (second panel from
top) clearly indicate the oscillations, compared to the regular noise in the pitch. The
third panel contains the Boolean inputs for R2U2: “set-parameter received”, “Low-
frequency-oscillation”, and “high-frequency-oscillation”. The bottom panel shows the
outputs of the R2U2 monitor, indicating two separate attacks. Figure 6B shows, for
comparison, the same pitch oscillations, but no “set-parameter” commands have re-
ceived. Thus, the R2U2 does not find evidence for a malicious attack using the attack
surface just described.

5 Oscillations around the other UAS axes are generated in a similar manner.
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4.3 DoS hijack attack

Attackers continiously find new ways to break into and compromise systems. Hence, it
is challenging to account for every possible attack scenario, since there can always be a
non foreseen loophole.

This testcase demonstrates, how our framework can detect an intrusion due to dif-
ferent indications without explicitly write a security model for a particular attack by
means of using grouping patterns as described earlier.

In our simulation we initiate a sophisticated attack to hijack the AC by trying to
establish a link from the attackers GCS to the UAS, which results in many bad packets
as can be seen in figure 7 between the timestamps 500 and 1000. These can be caused
by different reasons like an incorrect channel, protocol, or protocol-version, encryption.
In order to detect this, we can use for exampe a formula like: S1: The number of bad
packets NR

b is low, no more than one bad packet every 10 seconds.
�[0,10](N

R
b = 0 ∨ (NR

b ≥ 1 U[0,10]NR
b = 0)) Kristin, this is copied from RV2014

- does this make sense?

Next, an attacker would try to gather information about the AC, e.g., by requesting
the AC parameters or download the waypoints and parameters through the MAVLink
protocol, which is represented as spikes between timestamp 1000 and 1300. For detect-
ing this, we can use our eralier defined input groups unusual cmds after takeoff.

S2: After takeof, there shall be no unusual commands after takeoff until the AC has
landed. �((CMD == takeoff)→ �¬ unusual cmds after takeoff U land complete)

Kristin, does this make sense?
Finally, the attacker is flooding the communication link in a type of DoS attack by
sending continious requests to navigate to the attackers coordinates, combined with
requests to set the UASs home location to the same coordinates. The result can be seen
in the occurance of continiously high number of navigation requests starting around
timestamp 1400. For the detection, we write formulas, either explicitly detecting an
unusual period of navigational commands (S3) or a group of earlier defined unusual
periodic commands (S4).

S3: There shall be no continious navigation requests for more than 30 timestamps.

�[0,30]cmd navigate to coordinates

Kristin, does this make sense?
S4: There shall be no continious unusual periodic events for more than 60 times-

tamps.
�[0,60]unusual periodic events

Kristin, does this make sense?
The formulas S1, S2, S3 or S4 are no reliable indication for an ongoing attack if

viewed individually. However, if they are combined by feeding them into our BN, we
can calculate a high possibility for an ongoing attack.

 

 
bad packets
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denied operator command

Fig. 7. UAS DoS hijack results

Our simulation revealed, that even this
type of attack is detected by the operator
eventually, all attempts e.g. to change the
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UAS to its original course will immediately
be overwritten by the attackers navigation
commands at a high rate. Even if the AC tries
to return to the launch position either because
of an empty battery, or as result of an opera-
tors attempted countermeasure, it would fly
to the attackers location due to the altered
home coordinates. Hence, the simulation of
this scenario revealed, that besides crashing
the AC intentionally, there was no simple way

to prevent the DoS hijacking from the operators GCS. Also, especially in cases where
the AC is flying outside the operators communication range, it is desirable for the AC
to be capable of detecting such an attack autonomously.

4.4 GPS Spoofing

GPS plays a central role in the control of autonomous UAS. Typically, a flight mission
for a UAS is defined by a list of waypoints, each giving a target specified by the tuple
(longitude, latitude, altitude). The FSW in the UAS then calculates a trajectory to reach
the next waypoint in sequence. In order to accomplish this, the UAS needs to know its
own position, which it obtains by with the help of a GPS receiver. Due to limited accu-
racy, only GPS longitude and latitude are used for navigation, the altitude is obtained
using the barometric means of a pitot tube.

For its short-term (inner loop) control for aircraft attitude, the UAS is equipped with
inertial sensors. Accelerometers measure current acceleration in each of the aircraft
axes, gyros measure the angular rate for each axis. Integration of these sensor values
can be used to obtain relative positions and velocities. These data come with a very
fast rate, are independent from the outside but very noisy. So these signals cannot be
used for waypoint navigation. Thus the FSW uses a Kalman Filter to mix the inertial
signals with the GPS signals. If the inertial measurements deviate too much from the
GPS position, the filter is reset to the current GPS coordinates.

Several methods for attacking the GPS-based navigation of a UAS are known: GPS
jamming and GPS spoofing. In a jamming scenario, the signals sent from the GPS
satellites are drowned out by a powerful RF transmitter sending white noise. The UAS
then cannot receive any useful GPS signals anymore and its navigation must rely on
compass and dead reckoning. Such an attack can cause a UAS to miss its target or crash.
A more sophisticated attack involves GPS spoofing. In such a scenario, an attacker
gradually overpowers actual GPS signals with counterfeit signals that have been altered
to cause the UAS to incorrectly estimate its current position. That way, the UAS can be
directed into a different flight path.

This type of attack became widely known when the Iranians alledgedly used GPS
spoofing to highjack a CIA drone and forced it to land on an Iranian airfield rather
than its base [5,31] Subsequently, researchers from the University of Texas at Austin
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successfully demonstrated how a $80M Yacht at Sea,6, as well as a small UAV can be
directed to follow a certain pattern due to GPS spoofing [13].

Because civil GPS signals are not encrypted it is always possible to launch a GPS
spoofing attack. For such an attack, only a computer and a commercially available GPS
transmitter is necessary.
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Fig. 8. GPS spoofing

We developed an R2U2 model that is
able to detect certain kinds of GPS spoof-
ing. This model monitors the quality of
the GPS signal and the inertial navigation
information. For our experimental evalu-
ation, we defined a UAS mission, which
flies at a fixed altitude toward the next
waypoint, which is south-south-west of
the current UAS location. When spoof-
ing occurs, the attacker modifies the GPS
signal in such a way that tricks the UAS
into believing it is still flying in a straight
line toward the next waypoint, when the
UAS is actually veering off to reach a tar-

get point as defined by the attacker. Figure 8 shows the relevant signals during this
mission. Here, we focus on the latitude as observed by the UAS. The top panel shows
the point of the spoofing attack and the trace for the temporal development of the UAS
longitude as observed by the UAS (blue) and the actual UAS position (green). A severe
and increasing discrepancy can be observed as the effect of the attack. As the actual
position (ground truth) is not available to the on-board FSW, monitoring focuses on
alternate signals that convey a similar information. The inertial navigation unit produce
an error or offset signal that reflects the difference between the current position ob-
served by GPS and by the inertial sensors. The next two panels of Figure ?? shows that
these offset signals can become substantially large during the actual spoofing period,
when the GPS locations are gradually moved to the attacker’s target. These signals are
discretized and fed into the R2U2 model. The bottom panel shows the output of the
temporal observers. In order to avoid false alarms, we present a flight path that corre-
sponds to the trajectory of the UAS during the spoofing attack. However, this mission is
flown by using waypoints accordingly and no attack occurs. Thus, the GPS spoof alarm
should not become active.

In order to protect UASs from attacks against command link jamming, they are
sometimes put in a complete autonomous mode, accepting no further external com-
mands. [9] Ironically, what was intended to be a security measure could inhibit the
operator’s attempts to recover a UAS during such an attack. However, R2U2 enables
the AC to detect an ongoing attack autonomously in order to enable adequate counter-
measures.

Regarding the supposed CIA drone capture example, an Iranian engineer claimed
to have jammed the drone’s communications link in order to force the drone into an au-
topilot mode and initiate the attack. [31] Similar to the hijack example in section 4.3, the

6 http://www.ae.utexas.edu/news/features/humphreys-research-group
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spoofing detection can be improved by creating more sophisticated detection patterns
for our reasoning unit, where such a preceding communication loss or other information
like transients in GPS signals are taken into account.

5 Conclusion

We have extended our REALIZABLE, RESPONSIVE, UNOBTRUSIVE Unit to enable
real-time monitoring and diagnosis of security threats. This includes the ability to rea-
son about complex and subtle threats utilizing indicators from both hardware and soft-
ware. Our embedded implementation on-board a standard, flight-certifiable FPGA meets
stated FAA requirements and efficiently recognizes both individual attack indicators
and attack patterns, adding a new level of security check not available in any previ-
ous work. Case studies on-board a real NASA DragonEye UAS provide a promising
proof-of-concept of this new architecture.

The myriad directions now open for future work include considering software in-
strumentation to enable more FSW-related compromises and doing hardware-in-the-
loop simulation experiments to detect these. We plan to extend this technology to other,
more complex UAS and beyond, to other types of aircraft and spacecraft with different
configurations and capabilities. A major bottleneck of the current R2U2 is the manual
labor required to synthesize and test every temporal logic formula and BN; we are cur-
rently considering methods for making this a semi-automated process to better enable
future extensions.
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6 TODO’s

2. Writing assignments (ALL) -- writing ONLY

* abstract: done

* Introduction: done

* Related work: done

* Contributions: done

* Background: done; KYR can do polishing/shortening if needed

* Approach: material there; needs writing and formulation: Sang/Kristin

* Experimental: done; needs polishing, figure

* Experimental: dangerous commands/oscillations: done: needs formula and updated figure Johann

* Experimental: Hijack: material and text there; needs polishing/streamlining. Figures(?) Johann

* Experimental: GPS spoofing TODO Patrick/Johann

* Conclusions: Kristin (in progress)

FIGS and STUFF:

* Fig 2B: necessary????

* Fig 3: wrapfigure

* Fig 4A ?????

* Fig 4B: Johann

* Fig 5: update w/formulas

* Fig 6: Johann

* Fig 7: ?????? but interesting

* hijack example, mchtest du da auch eine "matlab" grafik machen?
Falls ja, das habe ich die rtr2u2 daten vom testflug als .csv und .odt
in 13_* eingecheckt.
Die interessanten CSV Spalten wren (beginnend bei 0):

11: "illegal packets received" (Indication for brute force decryption)
12: "Unusual periodic commands" (like mode changes - Indication of
ongoing attack)
14,15,16,17: "Unusual commands during flight"

* Fig 8: Add start time for spoofing

\begin{verbatim}
3. READING/POLISHING:

* Intro: DONE

* Related work: DONE

* Background: done?

* Approach: Johann

* Experimental: Sang/Kristin

* conclusions: Kristin (in progress)
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