
Temporal-Logic Based Runtime Observer Pairs for
System Health Management of Real-Time Systems⋆

Thomas Reinbacher1, Kristin Y. Rozier2, and Johann Schumann3

1 Vienna University of Technology, Austria, treinbacher@ecs.tuwien.ac.at
2 NASA Ames Research Center, Moffett Field, CA, USA, Kristin.Y.Rozier@nasa.gov

3 SGT, Inc., NASA Ames, Moffett Field, CA, USA, Johann.M.Schumann@nasa.gov

Abstract. We propose a real-time, Realizable, Responsive, Unobtrusive Unit
(rt-R2U2) to meet the emerging needs for System Health Management (SHM)
of new safety-critical embedded systems like automated vehicles, Unmanned
Aerial Systems (UAS), or small satellites. SHM for these systems must be able to
handle unexpected situations and adapt specifications quickly during flight testing
between closely-timed consecutive missions, not mid-mission, necessitating fast
reconfiguration. They must enable more advanced probabilistic reasoning for diag-
nostics and prognostics while running aboard limited hardware without affecting
the certified on-board software. We define and prove correct translations of two
real-time projections of Linear Temporal Logic to two types of efficient observer
algorithms to continuously assess the status of the system. A synchronous observer
yields an instant abstraction of the satisfaction check, whereas an asynchronous
observer concretizes this abstraction at a later, a priori known, time. By feeding the
system’s real-time status into a statistical reasoning unit, e.g., based on Bayesian
networks, we enable advanced health estimation and diagnosis. We experimen-
tally demonstrate our novel framework on real flight data from NASA’s Swift
UAS. By on-boarding rt-R2U2 aboard an existing FPGA already built into the
standard UAS design and seamlessly intercepting sensor values through read-only
observations of the system bus, we avoid system integration problems of software
instrumentation or added hardware. The flexibility of our approach with regard to
changes in the monitored specification is not due to the reconfigurability offered
by FPGAs; it is a benefit of the modularity of our observers and would also be
available on non-reconfigurable hardware platforms such as ASICs.

1 Introduction
Autonomous and automated systems, including Unmanned Aerial Systems (UAS), rovers,
and satellites, have a large number of components, e.g., sensors, actuators, and software,
that must function together reliably at mission time. System Health Management (SHM)
[48] can detect, isolate, and diagnose faults and possibly initiate recovery activities on
such real-time systems. Effective SHM requires assessing the status of the system with
respect to its specifications and estimating system health during mission time. Johnson et
al. [48, Ch.1] recently highlighted the need for new, formal-methods based capabilities
for modeling complex relationships among different sensor data and reasoning about
timing-related requirements; computational expense prevents the current best methods
for SHM from meeting operational needs.
⋆ A full version with appendices containing full proofs of correctness for all observer algorithms

is available at http://research.kristinrozier.com/TACAS14.html. This work
was supported in part by the Austrian Research Agency FFG, grant 825891, and NASA grant
NNX08AY50A.

http://research.kristinrozier.com/TACAS14.html

We need a new SHM framework for real-time systems like the Swift [47] electric
UAS (see Fig. 1), developed at NASA Ames. SHM for such systems requires:
RESPONSIVENESS: the SHM framework must continuously monitor the system. Devia-
tions from the monitored specifications must be detected within a tight and a priori known
time bound, enabling mitigation or rescue measures, e.g., a controlled emergency landing
to avoid damage on the ground. Reporting intermediate status and satisfaction of timed
requirements as early as possible is required for enabling responsive decision-making.
UNOBTRUSIVENESS: the SHM framework must not alter crucial properties of the system
including functionality (not change behavior), certifiability (avoid re-certification of flight
software/hardware), timing (not interfere with timing guarantees), and tolerances (not
violate size, weight, power, or telemetry bandwidth constraints). Utilizing commercial-
off-the-shelf (COTS) and previously proven system components is absolutely required to
meet today’s tight time and budget constraints; adding the SHM framework to the system
must not alter these components as changes that require them to be re-certified cancel
out the benefits of their use. Our goal is to create the most effective SHM capability with
the limitation of read-only access to the data from COTS components.
REALIZABILITY: the SHM framework must be usable in a plug-and-play manner by
providing a generic interface to connect to a wide variety of systems. The specification
language must be easily understood and expressive enough to encode e.g. temporal
relationships and flight rules. The framework must adapt to new specifications without a
lengthy re-compilation. We must be able to efficiently monitor different requirements
during different mission stages, like takeoff, approach, measurement, and return.

1.1 Related Work

Existing methods for Runtime Verification (RV) [35] assess system status by automat-
ically generating, mainly software-based, observers to check the state of the system
against a formal specification. Observations in RV are usually made accessible via
software instrumentation [46]; they report only when a specification has passed or
failed. Such instrumentation violates our requirements as it may make re-certification of
the system onerous, alter the original timing behavior, or increase resource consump-
tion [56]. Also, reporting only the outcomes of specifications violates our responsiveness
requirement.

Systems in our applications domain often need to adhere to timing-related rules like:
after receiving the command ’takeoff’ reach an altitude of 600ft within five minutes.
These flight rules can be easily expressed in temporal logics; often in some flavor of
linear temporal logic (LTL), as studied in [38]. Mainly due to promising complexity
results [37, 42], restrictions of LTL to its past-time fragment have most often been
used for RV. Though specifications including past time operators may be natural for
some other domains [52], flight rules require future-time reasoning. To enable more
intuitive specifications, others have studied monitoring of future-time claims; see [55]
for a survey and [36, 42, 45, 54, 60, 61] for algorithms and frameworks. Most of these
observer algorithms, however, were designed with a software implementation in mind
and require a powerful computer. There are many hardware alternatives, e.g. [43],
however all either resynthesize monitors from scratch or exclude checking real-time
properties [33]. Our unique approach runs the logic synthesis tool once to synthesize as
many real-time observer blocks as we can fit on our platform, e.g., FPGA or ASIC; our

2

Sec. 4.1 only interconnects these blocks. Others have proposed using Bayesian inference
techniques [41] to estimate the health of a system. However, modeling timing-related
behavior with dynamic Bayesian networks is very complex and quickly renders practical
implementations infeasible.

1.2 Approach and Contributions

We propose a new paired-observer SHM framework allowing systems like the Swift
UAS to assess their status against a temporal logic specification while enabling advanced
health estimation, e.g., via discrete Bayesian networks (BN) [41] based reasoning. This
novel combination of two approaches, often seen as orthogonal to each other, enables
us to check timing-related aspects with our paired observers while keeping BN health
models free of timing information, and thus computationally attractive. Essentially, we
can enable better real-time SHM by utilizing paired temporal observers to optimize BN-
based decision making. Following our requirements, we call our new SHM framework
for real-time systems a rt-R2U2 (real-time, Realizable, Responsive, Unobtrusive Unit).

Our rt-R2U2 synthesizes a pair of observers for a real-time specification ϕ given in
Metric Temporal Logic (MTL) [32] or a specialization of LTL for mission-time bounded
characteristics, which we define in Sec. 2. To ensure RESPONSIVENESS of our rt-R2U2,
we design two kinds of observer algorithms in Sec. 3 that verify whether ϕ holds at
a discrete time and run them in parallel. Synchronous observers have small hardware
footprints (max. eleven two-input gates per operator; see Theorem 3 in Sec. 4) and return
an instant, three-valued abstraction {true, false,maybe}) of the satisfaction check of ϕ
with every new tick of the Real Time Clock (RTC) while their asynchronous counterparts
concretize this abstraction at a later, a priori known time. This unique approach allows
us to signal early failure and acceptance of every specification whenever possible via the
asynchronous observer. Note that previous approaches to runtime monitoring signal only
specification failures; signaling acceptance, and particularly early acceptance is unique
to our approach and required for supporting other system components such as prognostics
engines or decision making units. Meanwhile, our synchronous observer’s three-valued
output gives intermediate information that a specification has not yet passed/failed,
enabling probabilistic decision making via a Bayesian Network as described in [59].

We implement the rt-R2U2 in hardware as a self-contained unit, which runs externally
to the system, to support UNOBTRUSIVENESS; see Sec. 4. Safety-critical embedded
systems often use industrial, vehicle bus systems, such as CAN and PCI, interconnecting
hardware and software components, see Fig 1. Our rt-R2U2 provides generic read-only
interfaces to these bus systems supporting our UNOBTRUSIVENESS requirement and
sidestepping instrumentation. Events collected on these interfaces are time stamped
by a RTC; progress of time is derived from the observed clock signal, resulting in a
discrete time base N0. Events are then processed by our runtime observer pairs that check
whether a specification holds on a sequence of collected events. Other RV approaches
for on-the-fly observers exhibit high overhead [44, 53, 57] or use powerful database
systems [34], thus, violate our requirements.

To meet our REALIZABILITY requirement, we design an efficient, highly parallel
hardware architecture, yet keep it programmable to adapt to changes in the specification.
Unlike existing approaches, our observers are designed with an efficient hardware
implementation in mind, therefore, avoid recursion and expensive search through memory

3

Event
Capture
& RTC

Runtime
Observers

sy
st

em
st

at
u
s

Higher
Level

Reasoning h
ea

lt
h

es
ti

m
at

io
n

event updates

en ⊧ {ϕ1, .., ϕn}

Health
Model
(BN)

Specifi-
cation
(ϕ)

Swift UAS

Common Bus Interface

Laser
Alti-

meter

IMU &
GPS

Radio
Link

Baro
Alti-

meter

Flight
Com-
puter

. . .

. . .

rt-
R2U2

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

en ⊧ (alt ≥ 600ft)

en ⊧ (pitch ≥ 5○)

en ⊧ (cmd == takeoff)

Fig. 1. rt-R2U2: An instance of our SHM framework rt-R2U2 for the NASA Swift UAS. Swift
subsystems (top): The laser altimeter maps terrain and determines elevation above ground by
measuring the time for a laser pulse to echo back to the UAS. The barometric altimeter determines
altitude above sea level via atmospheric pressure. The inertial measurement unit (IMU) reports
velocity, orientation (yaw, pitch, and roll), and gravitational forces using accelerometers, gyro-
scopes, and magnetometers. Running example (bottom): predicates over Swift UAS sensor data on
execution e; ranging over the readings of the barometric altimeter, the pitch sensor, and the takeoff
command received from the ground station; n is the time stamp as issued by the Real-Time-Clock.

and aim at maximizing the benefits of the parallel nature of hardware. We synthesize
rt-R2U2 once and generate a configuration, similar to machine code, to interconnect and
configure the static hardware observer blocks of rt-R2U2, adapting to new specifications
without running CAD or compilation tools like previous approaches. UAS have very
limited bandwidth constraints; transferring a lightweight configuration is preferable to
transferring a new image for the whole hardware design. The checks computed by these
runtime observers represent the system’s status and can be utilized by a higher level
reasoner, such as a human operator, Bayesian network, or otherwise, to compute a health
estimation, i.e., a conditional probability expressing the belief that a certain subsystem is
healthy, given the status of the system. In this paper, we compute these health estimations
by adapting the BN-based inference algorithms of [41] in hardware. Our contributions
include synthesis and integration of the synchronous/asynchronous observer pairs, a
modular hardware implementation, and execution of a proof-of-concept rt-R2U2 running
on a self-contained Field Programmable Gate Array (FPGA) (Sec. 5).

2 Real-time projections of LTL
MTL replaces the temporal operators of LTL with operators that respect time bounds [32].

Definition 1 (Discrete-Time MTL). For atomic proposition σ ∈ Σ, σ is a formula. Let
time bound J = [t, t′] with t, t′ ∈ N0. If ϕ and ψ are formulas, then so are:

¬ϕ ∣ ϕ ∧ ψ ∣ ϕ ∨ ψ ∣ ϕ→ ψ ∣ Xϕ ∣ ϕ UJ ψ ∣ ◻J ϕ ∣ ◇J ϕ.

4

Time bounds are specified as intervals: for t, t′ ∈ N0, we write [t, t′] for the set {i ∈ N0 ∣
t ≤ i ≤ t′}. We use the functions min,max,dur, to extract the lower time bound (t), the
upper time bound (t′), and the duration (t′ − t) of J . We define the satisfaction relation
of an MTL formula as follows: an execution e = (sn) for n ≥ 0 is an infinite sequence of
states. For an MTL formula ϕ, time n ∈ N0 and execution e, we define ϕ holds at time n
of execution e, denoted en ⊧ ϕ, inductively as follows:
en ⊧ true is true, en ⊧ σ iff σ holds in sn, en ⊧ ¬ϕ iff en ⊭ ϕ,
en ⊧ ϕ ∧ ψ iff en ⊧ ϕ and en ⊧ ψ, en ⊧ X ϕ iff en+1 ⊧ ϕ,
en ⊧ ϕ UJ ψ iff ∃i(i ≥ n) ∶ (i − n ∈ J ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ).

With the dualities ◇Jϕ ≡ true UJ ϕ and ¬ ◇J ¬ϕ ≡ ◻J ϕ we arrive at two
additional operators: ◻J ϕ (ϕ is an invariant within the future interval J) and ◇Jϕ (ϕ
holds eventually within the future interval J). In order to efficiently encode specifications
in practice, we introduce two special cases of ◻J ϕ and ◇Jϕ: τϕ ≡ ◻[0,τ] ϕ (ϕ is an
invariant within the next τ time units) and τϕ ≡◇[0,τ]ϕ (ϕ holds eventually within the
next τ time units). For example, the flight rule from Sec. 1, “After receiving the takeoff
command reach an altitude of 600ft within five minutes,” is efficiently captured in MTL
by (cmd == takeoff) → 5(alt ≥ 600ft), assuming a time-base of one minute and the
atomic propositions (alt ≥ 600ft) and (cmd == takeoff) as in Fig. 1.

Systems in our application domain are usually bounded to a certain mission time.
For example, the Swift UAS has a limited air-time, depending on the available battery
capacity and predefined waypoints. We capitalize on this property to intuitively monitor
standard LTL requirements using a mission-time bounded projection of LTL.

Definition 2 (Mission-Time LTL). For a given LTL formula ξ and a mission time
tm ∈ N0, we denote by ξm the mission-time bounded equivalent of ξ, where ξm is
obtained by replacing every ◻ϕ, ◇ϕ, and ϕ U ψ operator in ξ by the τϕ, τϕ, and
ϕ UJ ψ operators of MTL, where J = [0, tm] and τ = tm.

Inputs to rt-R2U2 are time-stamped events, collected incrementally from the system.

Definition 3 (Execution Sequence). An execution sequence for an MTL formula ϕ,
denoted by ⟨Tϕ⟩, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0 is a time stamp and
v ∈ {true, false,maybe} is a verdict.

We use a superscript integer to access a particular element in ⟨Tϕ⟩, e.g., ⟨T 0
ϕ⟩ is the

first element in execution sequence ⟨Tϕ⟩. We write Tϕ.τe to access τe and Tϕ.v to access
v of such an element. We say Tϕ holds if Tϕ.v is true and Tϕ does not hold if Tϕ.v
is false. For a given execution sequence ⟨Tϕ⟩ = ⟨T 0

ϕ⟩, ⟨T
1
ϕ⟩, ⟨T

2
ϕ⟩, ⟨T

3
ϕ⟩, . . . , the tuple

accessed by ⟨T iϕ⟩ corresponds to a section of an execution e as follows: for all times
n ∈ [⟨T i−1ϕ ⟩.τe + 1, ⟨T iϕ⟩.τe], e

n ⊧ ϕ in case ⟨T iϕ⟩.v is true and en ⊭ ϕ in case ⟨T iϕ⟩.v is
false. In case ⟨T iϕ⟩ is maybe, neither en ⊧ ϕ nor en ⊭ ϕ is defined.

In the remainder of this paper, we will frequently refer to execution sequences
collected from the Swift UAS as shown in Fig. 1. The predicates shown are atomic
propositions over sensor data in our specifications and are sampled with every new
time stamp n issued by the RTC. For example, ⟨Tpitch≥5○⟩ = ((false,0), (false,1),
(false,2), (true,3), . . . , (true,17), (true,18)) describes en ⊧ (pitch ≥ 5○) sampled
over n ∈ [0,18] and ⟨Tpitch≥5○⟩ holds 19 elements.

5

3 Asynchronous and Synchronous Observers
The problem of monitoring a real-time specification has been studied extensively in the
past; see [39,55] for an overview. Solutions include: (a) translating the temporal formula
into a finite-state automaton that accepts all the models of the specification [42,43,45,61],
(b) restricting MTL to its safety fragment and waiting until the operators’ time bounds
have elapsed to decide the truth value afterwards [36, 54], and (c) restricting LTL to its
past-time fragment [37, 42, 57]. Compiling new observers to automata as in (a) requires
re-running the logic synthesis tool to yield a new hardware observer, in automaton
or autogenerated VHDL code format as described in [43], which may take dozens of
minutes to complete, violating the REALIZABILITY requirement. Observers generated by
(b) are in conflict with the RESPONSIVENESS requirement and (c) do not natively support
flight rules. Our observers provide UNOBTRUSIVENESS via a self-contained hardware
implementation. To enable such an implementation, our design needs to refrain from
dynamic memory, linked lists, and recursion – commonly used in existing software-based
observers, however, not natively available in hardware.

Our two types of runtime observers differ in the times when new outputs are gener-
ated and in the resource footprints required to implement them. A synchronous (time-
triggered) observer is trimmed towards a minimalistic hardware footprint and computes
a three-valued abstraction of the satisfaction check for the specification with each tick of
the RTC, without considering events happening after the current time. An asynchronous
(event-triggered) observer concretizes this abstraction at a later, a priori known, time
and makes use of synchronization queues to take events into account that occur after the
current time.1 Our novel parallel composition of these two observers updates the status
of the system at every tick of the RTC, yielding great responsiveness. An inconclusive
answer when we can’t yet know true/false is still beneficial as the higher-level reasoning
part of our rt-R2U2 supports reasoning with inconclusive inputs. This allows us to derive
an intermediate estimation of system health with the option to initiate fault mitigation
actions even without explicitly knowing all inputs. If exact reasoning is required, we can
re-evaluate system health when the asynchronous observer provides exact answers.

In the remainder of this section, we discuss2 both asynchronous and synchronous
observers for the operators ¬ϕ, ϕ ∧ ψ, τ ϕ, ◻J ϕ, and ϕ UJ ψ. Informally, an MTL
observer is an algorithm that takes execution sequences as input and produces another
execution sequence as output. For a given unary operator ●, we say that an observer
algorithm implements en ⊧ ●ϕ, iff for all execution sequences ⟨Tϕ⟩ as input, it produces
an execution sequence as output that evaluates en ⊧ ●ϕ (analogous for binary operators).

3.1 Asynchronous Observers
The main characteristic of our asynchronous observers is that they are evaluated with
every new input tuple and that for every generated output tuple T we have that T.v ∈
{true, false} and T.τe ∈ [0, n]. Since verdicts are exact evaluations of a future-time
specification ϕ for each clock tick they may resolve ϕ for clock ticks prior to the current
time n if the information required for this resolution was not available until n.

1 Similar terms have been used by others [40] to refer to monitoring with pairs of observers that
do not update with the RTC, incur delays dangerous to a UAS, and require system interaction
that violates our requirements (Sec. 1).

2 Proofs of correctness for every observer algorithm appear in the Appendix.

6

Our observers distinguish two types of transitions of the signals described by exe-
cution sequences. We say transition of execution sequence ⟨Tϕ⟩ occurs at time n =
⟨T iϕ⟩.τe + 1 iff (⟨T iϕ⟩.v⊕ ⟨T i+1ϕ ⟩.v)∧ ⟨T i+1ϕ ⟩.v holds. Similarly, we say transition of
execution sequence ⟨Tϕ⟩ occurs at time n = ⟨T iϕ⟩.τe+1 iff (⟨T iϕ⟩.v⊕ ⟨T i+1ϕ ⟩.v)∧ ⟨T iϕ⟩.v
holds (⊕ denotes the Boolean exclusive-or). For example, transitions and of
⟨Tpitch≥5○⟩ in Fig. 1 occur at times 3 and 11, respectively.

Negation (¬ϕ) The observer for ¬ϕ, as stated in Alg. 7, is straightforward: for every
input Tϕ we negate the truth value of Tϕ.v. The observer generates (. . . , (true,2),
(false,3), . . .).

Invariant within the Next τ Time Stamps (τ ϕ) An observer for τ ϕ requires
registers m↑ϕ and mτs with domain N0: m↑ϕ holds the time stamp of the latest
transition of ⟨Tϕ⟩ whereas mτs holds the start time of the next tuple in ⟨Tϕ⟩. For the
observer in Alg. 8, the check m ≤ (Tϕ.τe − τ) in line 8 tests whether ϕ held for at
least the previous τ time stamps. To illustrate the algorithm, consider an observer for
5 (pitch ≥ 5○) and the execution in Fig. 1. At time n = 0, we have m↑ϕ = 0 and since

⟨T 0
pitch≥5○⟩ does not hold the output is (false,0). Similarly, the outputs for n ∈ [1,2]

are (false,1) and (false,2). At time n = 3, a transition of ⟨Tpitch≥5○⟩ occurs, thus
m↑ϕ = 3. Since the check in line 8 does not hold, the algorithm does not generate a new
output, i.e., returns (,) designating output is delayed until a later time, which repeats
at times n ∈ [4,7]. At n = 8, the check in line 8 holds and the algorithm returns (true,3).
Likewise, the outputs for n ∈ [9,10] are (true,4) and (true,5). At n = 11, ⟨T 11

pitch≥5○⟩

does not hold and the algorithm outputs (false,11). We note the ability of the observer to
re-synchronize its output with respect to its inputs and the RTC. For n ∈ [8,10], outputs
are given for a time prior to n, however, at n = 11 the observer re-synchronizes: the
output (false,11) signifies that en ⊭ 5 (pitch ≥ 5○) for n ∈ [6,11]. By the equivalence
τ ϕ ≡ ¬ τ¬ϕ, we immediately arrive at an observer for τ ϕ from Alg. 8 by negating

both the input and the output tuple.

Invariant within Future Interval (◻J ϕ) The observer for ◻J ϕ, as stated in Alg. 9,
builds on an observer for τ ϕ and makes use of the equivalence τϕ ≡ ◻[0,τ] ϕ.
Intuitively, the observer for τ ϕ returns true iff ϕ holds for at least the next τ time
units. We can thus construct an observer for ◻J ϕ by reusing the algorithm for τ ϕ,
assigning τ = dur(J) and shifting the obtained output by min(J) time stamps into the
past. From the equivalence ◇Jϕ ≡ ¬ ◻J ¬ϕ, we can immediately derive an observer
for ◇J ϕ from the observer for ◻J ϕ. To illustrate the algorithm, consider an observer
for ◻5,10 (alt ≥ 600ft) over the execution in Fig. 1. For n ∈ [0,4] the algorithm returns
(,), since (⟨T 0...4

alt≥600ft⟩.τe − 5) ≥ 0 (line 3 of Alg. 9) does not hold. At n = 5 the
underlying observer for 5 (alt ≥ 600ft) returns (false,5), which is transformed (by
line 4) into the output (false,0). For similar arguments, the outputs for n ∈ [6,9]
are (false,1), (false,2), (false,3), and (false,4). At n ∈ [10,14], the observer for
5 (alt ≥ 600ft) returns (,). At n = 15, 5 (alt ≥ 600ft) yields (true,10), which is

transformed (by line 4) into the output is (true,5). Note also that Xϕ ≡ ◻[1,1] ϕ.
The remaining observers for the binary operators ϕ ∧ ψ and ϕ UJ ψ take tuples

(Tϕ, Tψ) as inputs, where Tϕ is from ⟨Tϕ⟩ and Tψ is from ⟨Tψ⟩. Since ⟨Tϕ⟩ and ⟨Tψ⟩
are execution sequences produced by two different observers, the two elements of the

7

input tuple (Tϕ, Tψ) are not necessarily generated at the same time. Our observers for
binary MTL operators thus use two FIFO-organized synchronization queues to buffer
parts of ⟨Tϕ⟩ and ⟨Tψ⟩, respectively. For a synchronization queue q we denote by q=()
its emptiness and by ∣q∣ its size.

Algorithm 1 Observer for ¬ϕ.
1: At each new input Tϕ:
2: Tξ ← (¬ Tϕ.v, Tϕ.τe)
3: return Tξ

Algorithm 2 Observer for τ ϕ. Initially, m↑ϕ =
mτs = 0.
1: At each new input Tϕ:
2: Tξ ← Tϕ
3: if transition of Tξ occurs then
4: m↑ϕ ←mτs

5: end if
6: mτs ← Tϕ.τe + 1
7: if Tξ holds then
8: if m↑ϕ ≤ (Tξ.τe − τ) holds then
9: Tξ.τe ← Tξ.τe − τ

10: else
11: Tξ ← (,)
12: end if
13: end if
14: return Tξ

Algorithm 3 Observer for ϕ ∧ ψ.
1: At each new input (Tϕ, Tψ):
2: if Tϕ holds and Tψ holds and qϕ ≠ () holds and
qψ ≠ () holds then

3: Tξ ← (true,min(Tϕ.τe, Tψ.τe))
4: else if ¬Tϕ holds and ¬Tψ holds and qϕ ≠ () holds

and qψ ≠ () holds then
5: Tξ ← (false,max(Tϕ.τe, Tψ.τe))
6: else if ¬Tϕ holds and qϕ ≠ () holds then
7: Tξ ← (false, Tϕ.τe)
8: else if ¬Tψ holds and qψ ≠ () holds then
9: Tξ ← (false, Tψ.τe)

10: else
11: Tξ ← (,)
12: end if
13: dequeue(qϕ, qψ, Tξ.τe)
14: return Tξ

Algorithm 4 Observer for ◻J ϕ.
1: At each new input Tϕ:
2: Tξ ← dur(J) Tϕ
3: if (Tξ.τe −min(J) ≥ 0) then
4: Tξ.τe ← Tξ.τe −min(J)
5: else
6: Tξ ← (,)
7: end if
8: return Tξ

Algorithm 5 Observer for ϕUJ ψ. Initially,
mpre =m↑ϕ = 0, m↓ϕ = −∞, and p = false.
1: At each new input (Tϕ, Tψ) in lockstep mode:
2: if transition of Tϕ occurs then
3: m↑ϕ ← τe − 1
4: mpre ← −∞
5: end if
6: if transition of Tϕ occurs and Tψ holds then
7: Tϕ.v, p← true, true
8: m↓ϕ ← τe
9: end if

10: if Tϕ holds then
11: if Tψ holds then
12: if (m↑ϕ +min(J) < τe) holds then
13: mpre ← τe
14: return (true, τe −min(J))
15: else if p holds then
16: return (false,m↓ϕ)
17: end if
18: else if (mpre + dur(J) ≤ τe) holds then
19: return (false,max(m↑ϕ, τe −max(J)))
20: end if
21: else
22: p← false
23: if (min(J) = 0) holds then
24: return (Tψ.v, τe)
25: end if
26: return (false, τe)
27: end if
28: return (,)

Conjunction (ϕ∧ψ) The observer for ϕ∧ψ, as stated in Alg. 10, reads inputs (Tϕ, Tψ)
from two synchronization queues, qϕ and qψ. Intuitively, the algorithm follows the
rules for conjunction in Boolean logic with additional emptiness checks on qϕ and
qψ. The procedure dequeue(qϕ, qψ, Tξ.τe) drops all entries Tϕ in qϕ for which the
following holds: Tϕ.τe ≤ Tξ.τe (analogous for qψ). To illustrate the algorithm, con-
sider an observer for 5 (alt ≥ 600ft)∧ (pitch ≥ 5○) and the execution in Fig. 1.

8

For n ∈ [0,9] the two observers for the involved subformulas immediately output
(false, n). For n ∈ [10,14], the observer for 5 (alt ≥ 600ft) returns (,), while
in the meantime, the atomic proposition (pitch ≥ 5○) toggles its truth value several
times, i.e., (true,10), (false,11), (false,12), (true,13), (false,14). These tuples need
to be buffered in queue qpitch≥5○ until the observer for 5 (alt ≥ 600ft) generates
its next output, i.e., (true,10) at n = 15. We apply the function aggregate(⟨Tϕ⟩),
which repeatedly replaces two consecutive elements ⟨T iϕ⟩, ⟨T

i+1
ϕ ⟩ in ⟨Tϕ⟩ by ⟨T i+1ϕ ⟩ iff

⟨T iϕ⟩.v = ⟨T i+1ϕ ⟩.v, to the content of qpitch≥5○ once every time an element is added to
qpitch≥5○ . Therefore, at n = 15: qpitch≥5○ = ((true,10), (false,12), (true,13), (false,14),
(true,15)) and q

5 (alt≥600ft) = ((true,10)). The observer returns (true,10) (line 3)
and dequeue(qϕ, qψ,10) yields: qpitch≥5○ = ((false,12), (true,13), (false,14), (true,15))
and q

5 (alt≥600ft) = ().

Until within Future Interval (ϕ UJ ψ) The observer for ϕ UJ ψ, as stated in Alg. 12,
reads inputs (Tϕ, Tψ) from two synchronization queues and makes use of a Boolean
flag p and three registers m↑ϕ, m↓ϕ, and mpre with domain N0 ∪ {−∞}: m↑ϕ (m↓ϕ)
holds the time stamp of the latest transition (transition) of ⟨Tϕ⟩ and mpre

holds the latest time stamp where the observer detected ϕ UJ ψ to hold. Input tuples
(Tϕ, Tψ) for the observer are read from synchronization queues in a lockstep mode:
(Tϕ, Tψ) is split into (T ′ϕ, T

′
ψ), where T ′ϕ.τe = T

′
ψ.τe and the time stamp T ′′ϕ .τe of the

next tuple (T ′′ϕ , T
′′
ψ) is T ′ϕ.τe + 1. This ensures that the observer outputs only a single

tuple at each run and avoids output buffers, which would account for additional hardware
resources (see correctness proof in the Appendix for a discussion). Intuitively, if Tϕ
does not hold (lines 22-26) the observer is synchronous to its input and immediately
outputs (false, Tϕ.τe). If Tϕ holds (lines 11-20) the time stamp n′ of the output tuple
is not necessarily synchronous to the time stamp Tϕ.τe of the input anymore, however,
bounded by (Tϕ.τe −max(J)) ≤ n′ ≤ Tϕ.τe (see Lemma “unrolling” in the Appendix).
To illustrate the algorithm, consider an observer for (pitch ≥ 5○) U[5,10] (alt ≥ 600ft)
over the execution in Fig. 1. At time n = 0, we have mpre = 0, m↑ϕ = 0, and m↓ϕ = −∞
and since ⟨T 0

pitch≥5○⟩ does not hold, the observer outputs (false,0) in line 26. The outputs
for n ∈ [1,2] are (false,1) and (false,2). At time n = 3, a transition of ⟨Tpitch≥5○⟩
occurs, thus we assign m↑ϕ = 2 and mpre = −∞ (lines 3 and 4). Since ⟨T 3

pitch≥5○⟩ holds
and ⟨T 3

alt≥600ft⟩ does not hold, the predicate in line 18 is evaluated, which holds and the
algorithm returns ⟨false,max(2,3−10)⟩ = (false,2). Thus, the observer does not yield a
new output in this case, which repeats for times n ∈ [4,9]. At time n = 10, a transition
of ⟨Talt≥600ft⟩ occurs and the predicate in line 12 is evaluated. Since (2 + 5) < 10 holds,
the algorithm returns (true,5), revealing that en ⊧ (pitch ≥ 5○) U[5,10] (alt ≥ 600ft)

for n ∈ [3,5]. At time n = 11, a transition of ⟨Tpitch≥5○⟩ occurs and since ⟨T 11
alt≥600ft⟩

holds, p and the truth value of the current input ⟨T 11
pitch≥5○⟩.v are set true and m↓ϕ = 11.

Again, line 12 is evaluated and the algorithm returns (true,6). At time n = 12, since
⟨T 12

pitch≥5○⟩ does not hold, we clear p in line 22 and the algorithm returns (false,12) in
line 26, i.e., en ⊭ (pitch ≥ 5○) U[5,10] (alt ≥ 600ft) for n ∈ [7,12]. At time n = 13,
a transition of ⟨Tpitch≥5○⟩ occurs, thus m↑ϕ = 12 and mpre = −∞. The predicates
in line 12 and 15 do not hold, the algorithm returns no new output in line 28. At time
n = 14, a transition of ⟨Tpitch≥5○⟩ occurs, thus p and ⟨T 14

pitch≥5○⟩.v are set true and

9

m↓ϕ = 14. The predicate in line 15 holds, and the algorithm outputs (false,14), revealing
that en ⊭ (pitch ≥ 5○) U[5,10] (alt ≥ 600ft) for n ∈ [13,14].

3.2 Synchronous Observers
The main characteristic of our synchronous observers is that they are evaluated at every
tick of the RTC and that their output tuples T are guaranteed to be synchronous to
the current time stamp n. Thus, for each time n, a synchronous observer outputs a
tuple T with T.τe = n. This eliminates the need for synchronization queues. Inputs
and outputs of these observers are execution sequences with three-valued verdicts.
The underlying abstraction is given by êval ∶ � → {true, false,maybe}, where � ∈
{¬ϕ,ϕ ∧ ψ, τ ϕ,◻J ϕ,ϕ UJ ψ}. The implementation of êval (¬ϕ) and êval (ϕ ∧ ψ)
follows the rules for Kleene logic [49]. For the remaining operators we define the verdict
Tξ.v of the output tuple (Tξ.v, n), generated for inputs (Tϕ.v, n) (respectively (Tψ.v, n)
for ϕ UJ ψ), as:

êval (τ ϕ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

true if Tϕ.v holds and τ = 0,
false if Tϕ.v does not hold,
maybe otherwise.

êval (◻J ϕ) = maybe.

êval (ϕ UJ ψ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

true if Tϕ.v and Tψ.v holds
and min(J) = 0,

false if Tϕ.v does not hold,
maybe otherwise.

To illustrate our synchronous observer algorithms, consider the previously discussed
formula 5 (alt ≥ 600ft) ∧ (pitch ≥ 5○), which we want to evaluate using the syn-
chronous observer:

ξ = êval (êval (5 (alt ≥ 600ft)) ∧ (pitch ≥ 5○))
For n ∈ [0,9], as in the case of the asynchronous observer, we can immediately output
(false, n). At n = 10, êval (5 (alt ≥ 600ft)) yields (maybe, n), thus, the observer is
inconclusive about the truth value of e10 ⊧ ξ. At n ∈ [11,12] since (pitch ≥ 5○) does
not hold, the outputs are (false, n). For analogous arguments, the output at n = 13 is
(maybe,13), at n = 14 (false,14), and at n = 15 (maybe,15). In this way, at times
n ∈ {11,12,14} the synchronous observer completes early evaluation of ξ, producing
output that would, without the abstraction, be guaranteed by the exact asynchronous
observer with a delay of 5 time units, i.e., at times n ∈ {16,17,19}.

4 Mapping Observers into Efficient Hardware
We introduce a mapping of the observer pairs into efficient hardware blocks and a
synthesis procedure to generate a configuration for these blocks from an arbitrary MTL
specification. This configuration is loaded into the control unit of our rt-R2U2, where it
changes the interconnections between a pool of (static) hardware observer blocks and
assigns memory regions for synchronization queues. This approach enables us to quickly
change the monitored specification (within resource limitations) without re-compiling
the rt-R2U2’s hardware, supporting our REALIZABILITY requirement.

Asynchronous observers require arithmetic operations on time stamps. Registers
and flags as required by the observer algorithm are mapped to circuits that can store

10

information, such as flip-flops. For the synchronization queues we turn to block RAMs
(abundant on FPGAs), organized as ring buffers. Time stamps are internally stored in
registers of width w = ⌈log2(n)⌉ + 2, to indicate −∞ and to allow overflows when
performing arithmetical operations on time stamps. Subtraction and relational operators
as required by the observer for τ ϕ (Fig. 2) can be built around adders. For example,
the check in line 8 of Alg. 8 is implemented using two w-bit wide adders: one for
q = Tϕ.τe − τ and one to decide whether m↑ϕ ≥ q. A third adder runs in parallel and
assigns a new value to mτs (line 6 of Alg. 8). Detecting a transition on ⟨Tϕ⟩ maps to
an XOR gate and an AND gate, implementing the circuit (T i−1ϕ .v ⊕ T iϕ.v) ∧ T

i
ϕ.v, where

T i−1ϕ .v is the truth value of the previous input, stored in a flip-flop. The multiplexer either
writes a new output or sets a flag to indicate (,).

Synchronous observers do not require calculations on time stamps and directly map
to basic digital logic gates. Fig. 2 shows a circuit representing an êval (τ ϕ) observer
that accounts for one two-input AND gate, one two-input OR gate, and two Inverter gates.
Inputs (i1, i2) and outputs (y1, y2) are encoded (to project the three-valued logic into
Boolean logic) such as: true (0,0), false (0,1), and maybe (1,0). Input j is set if τe = 0
and cleared otherwise.

4.1 Synthesizing a Configuration for the rt-R2U2
The synthesis procedure to translate an MTL specification ξ into a configuration such
that the rt-R2U2 instantiates observers for both ξ and êval (ξ), works as follows:

– Preprocessing. By the equivalences given in Sect. 2 rewrite ξ to ξ′, such that operators
in ξ′ are from {¬ϕ,ϕ ∧ ψ, τ ϕ,◻J ϕ,ϕ UJ ψ} (SA1).

– Parsing. Parse ξ′ to obtain an Abstract Syntax Tree (AST), denoted by AST(ξ′). The
leaves of this tree are the atomic propositions Σ of ξ′ (SA2).

– Allocating observers. For all nodes q in AST(ξ′) allocate both the corresponding
synchronous and the asynchronous hardware observer block (SA3).

– Adding synchronization queues. ∀q ∈ AST(ξ′): If q is of type ϕ ∧ ψ or ϕ UJ ψ add
queues qϕ and qψ to the inputs of the respective asynchronous observer (MA1).

– Interconnect and dimensioning. Connect observers and queues according to AST(ξ′).
Execute Alg. 6 (MA2).

Let {σ1, σ2, σ3} ∈ Σ and ξ = σ1 → (10 (σ2) ∨ 100(σ3)) be an MTL formula
we want to synthesize a configuration for. SA1 yields ξ′ = ¬(σ1 ∧ ¬(¬ 10 (¬σ2)) ∧
¬(¬ 100 (¬σ3))) which simplifies to ξ = ¬(σ1 ∧ 10 (¬σ2)∧ 100 (¬σ3)). SA2 yields
AST(ξ′). SA3 instantiates two ϕ ∧ ψ, three ¬ϕ, one 10 Tϕ and one 100 Tϕ observers,
both synchronous and asynchronous. MA1, introduces queues qσ1 , qξ2 , qξ3 , qξ4 and MA2
interconnects observers and queues and assigns ∣qσ1 ∣ = 100, ∣qξ2 ∣ = 100, ∣qξ3 ∣ = 10, and
∣qξ4 ∣ = 0, see Fig. 2.

4.2 Circuit Size and Depth Complexity Results
Having discussed how to determine the size of the synchronization queues for our
asynchronous MTL observers, we are now in the position to prove space and time
complexity bounds.

11

Algorithm 6 Assigning synchronization queue sizes for AST(ξ′). Let S be a set of nodes;
Initially: w = 0, add all Σ nodes of AST(ξ′) to S; The function wcd ∶ � → N0 calculates the
worst-case-delay an asynchronous observer may introduce by: wcd(¬ϕ) = wcd(ϕ ∧ ψ) = 0,
wcd(τ ϕ) = τ , wcd(◻J ϕ) = wcd(ϕ UJ ψ) =max(J).
1: while S is not empty do
2: s,w ← get next node from S, 0
3: if s is type ϕ UJ ψ or ϕ ∧ ψ then
4: w ←max(∣qϕ∣, ∣qψ ∣) +wcd(s)
5: end if
6: while s is not a synchronization queue do
7: s,w ← get predecessor of s in AST(ξ′), w +wcd(s)
8: end while
9: Set ∣q∣ = w; (q is opposite synchronization queue of s)

10: Add all ϕ UJ ψ and ϕ ∧ ψ nodes that have unassigned synchronization queue sizes to S
11: end while

Theorem 1 (Space Complexity of Asynchronous Observers). The respective asyn-
chronous observer for a given MTL specification ϕ has a space complexity, in terms of
memory bits, bounded by (2 + ⌈log2(n)⌉) ⋅ (2 ⋅m ⋅ p), where m is the number of binary
observers (i.e., ϕ ∧ ψ or ϕUJ ψ) in ϕ, p is the worst-case delay of a single predecessor
chain in AST(ϕ), and n ∈ N0 is the time stamp it is executed.

Theorem 2 (Time Complexity of Asynchronous Observers). The respective asyn-
chronous observer for a given MTL specification ϕ has an asymptotic time complexity of
O(log2 log2max(p,n) ⋅ d), where p is the maximum worst-case-delay of any observer

in AST(ϕ), d the depth of AST(ϕ), and n ∈ N0 the time stamp it is executed.

For our synchronous observers, we prove upper bounds in terms of two-input gates on
the size of resulting circuits. Actual implementations may yield significant better results
on circuit size, depending on the performance of the logic synthesis tool.

q =
Tϕ.τe − τ

m↑ϕ ≥ q

mτs =
Tϕ.τe + 1

multiplexer

TξTϕ

edge detection

i1

j

i2

y1

y2

¬ σ2 ¬ σ3

10 ξ0 100 ξ1

ξ2 ∧ ξ3

σ1 ∧ ξ4

¬ ξ5

êval (¬ σ2) êval (¬ σ3)

êval (10 ξ0) êval (100 ξ1)

êval (ξ2 ∧ ξ3)

êval (σ1 ∧ ξ4)

êval (¬ ξ5)

σ1
σ2
σ3

inputs

asynchronous synchronous

outputs

depth d of
AST (ξ) = 5

en
′

⊧ ξ en ⊧ êval (ξ)

qσ1

qξ2 qξ3

qξ4

Fig. 2. Left: hardware implementations for τ ϕ (top) and êval (τ ϕ) (bottom). Right: subfor-
mulas of AST(ξ), observers, and queues synthesized for ξ. Mapping the observers to hardware
yields two levels of parallelism: (i) asynchronous (left) and the synchronous observers (right) run
in parallel and (ii) observers for subformulas run in parallel, e.g., 10 ξ0 and 100 ξ1.

12

Theorem 3 (Circuit-Size Complexity of Synchronous Observers). For a given MTL
formula ϕ, the circuit to monitor êval (ϕ) has a circuit-size complexity bounded by
11 ⋅m, where m is the number of observers in AST(ϕ).

Theorem 4 (Circuit-Depth Complexity of Synchronous Observers). For a given
MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-depth complexity of 4 ⋅ d.

5 Applying the rt-R2U2 to NASA’s Swift UAS
We implemented our rt-R2U2 as a register-transfer-level VHDL hardware design, which
we simulated in MENTOR GRAPHICS MODELSIM and synthesized for different FPGAs
using the industrial logic synthesis tool ALTERA QUARTUS II.3 With our rt-R2U2, we
analyzed raw flight data from NASA’s Swift UAS collected during test flights. The
higher-level reasoning is performed by a health model, modeled as a Bayesian network
(BN) where the nodes correspond to discrete random variables. Fig. 3 shows the relevant
excerpt for reasoning about altitude. Directed edges encode conditional dependencies
between variables, e.g., the sensor reading SL depends on the health of the laser altimeter
sensor HL. Conditional probability tables at each node define the local dependencies.
During health estimation, verdicts computed by our observer algorithms are provided
as virtual sensor values to the observable nodes SL, SB , SS ; e.g., the laser altimeter
measuring an altitude increase would result in setting SL to state inc. Then, the posteriors
of the multivariate probability distribution encoded in the BN are calculated [41]; for
details of modeling and reasoning see [58].

Our temporal specifications are evaluated by our runtime observers and describe
flight rules (ϕ1, ϕ2) and virtual sensors:

ϕ1 = (cmd == takeoff)→ 10 (altB ≥ 600ft)
ϕ2 = (cmd == takeoff)→ ∗ (cmd == land)

ϕ1 encodes our running example flight rule; ϕ2 is a mission-bounded LTL property
requiring that the command land is received after takeoff, within the projected mission
time, indicated by ∗. Fig. 3 shows the execution sequences produced by both the asyn-
chronous (en ⊧ ϕ1) and the synchronous (en ⊧ êval (ϕ1)) observers for flight rule ϕ1.
To keep the presentation accessible we scaled the timeline to just 24 time stamps; the
actual implementation uses a resolution of 232 time stamps. The synchronous observer
is able to prove the validity of ϕ1 immediately at all time stamps but one (n = 1),
where the output is (maybe,1), indicated by . The asynchronous observer will resolve
this inconclusive output at time n = 11, by generating the tuple (false,1), revealing a
violation of ϕ at time n = 1. The verdicts of σSL↑

,σSL↓
, σSB↑

, σSB↓
, ϕSS↑

, and ϕSS↓
are

mapped to inputs SL, SB , SS of the health model:
σSL↑

= (altL − alt′L) > 0 σSL↓
= (altL − alt′L) < 0

σSB↑
= (altB − alt′B) > 0 σSB↓

= (altB − alt′B) < 0

σSB↑
observes if the first derivation of the barometric altimeter reading is positive, thus,

holds if the sensors values indicate that the UAS is ascending. We set SB to inc if σSB↑

holds and to dec if σSB↓
holds. The specifications ϕSS↑

and ϕSS↓
subsume the pitch

and the velocity readings to an additional, indirect altitude sensor. Due to sensor noise,

3 Simulation traces are available in the Appendix; tools can be downloaded at
http://www.mentor.com and http://www.altera.com.

13

Barometric altitude (altB) / ft

Laser altitude (altL) / ft

300

600

900
Swift UAS flight data

Euler pitch angle (pitch) / rad

Vert. velocity (vel up) / m
s

Barometric altitude (altB) / ft

Laser altitude (altL) / ft

300

600

900 Swift UAS flight data

Euler pitch angle (pitch) / rad

Vertical velocity (vel up) / m
s

Pr(HL = healthy ∣ en ⊧ {σSL
, σSB

, ϕSS
})

Pr(HB = healthy ∣ en ⊧ {σSL
, σSB

, ϕSS
})

UAS health estimation (output of higher-level reasoning unit)

resolve by async. observer

UAS status assessment (output of runtime observers)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 0 0 0 0 1 12 13 14 15 16 17 18 19 20 21 22 23

n

en ⊧ altB ≥ 600ft

en ⊧ (cmd == takeoff)

en ⊧ êval (ϕ1)

en ⊧ ϕ1
τe

v

S BaroAlt
(SB)

H BaroAlt
(HB)

S LaserAlt
(SL)

H LaserAlt
(HL)

S Sensors
(SS)

U Altimeter
(UA) HB ΘHB

healthy 0.9
bad 0.1

HL ΘHL

healthy 0.7
bad 0.3

UA ΘUA

inc 0.5
dec 0.5

UA SS ΘSS

inc
inc 0.7
dec 0.1
maybe 0.2

dec
inc 0.1
dec 0.7
maybe 0.2

UA HB SB ΘSB

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

UA HL SL ΘSL

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

Inputs to our rt-R2U2 are flight data, sampled in real time;
a health model as BN, right; and an MTL specification ϕ.
Outputs: health estimation (posterior marginals ofHL

andHB , quantifying the health of the laser and
barometric altimeter) and the status of the UAS.

Fig. 3. Adding SHM to the Swift UAS

simple threshold properties on the IMU signals would yield a large number of false
positives. Instead ϕSS↑

and ϕSS↓
use τ ϕ observers as filters, by requiring that the pitch

and the velocity signals exceed a threshold for multiple time steps.

ϕSS↑
= 10 (pitch ≥ 5○) ∧ 5 (vel up ≥ 2m

s
)

ϕSS↓
= 10 (pitch < 2○) ∧ 5 (vel up ≤ −2m

s
)

Our real-time SHM analysis matched post-flight analysis by test engineers, including
successfully pinpointing a laser altimeter failure, see Fig 3: the barometric altimeter, pitch,
and the velocity readings indicated an increase in altitude (σSB↑

and ϕSS↑
held) while

the laser altimeter indicated a decrease (σSL↓
held). The posterior marginal Pr(HL =

healthy ∣ en ⊧ {σSL
, σSB

, ϕSS
}) of the node HL, inferred from the BN, dropped from

70% to 8%, indicating a low degree of trust in the laser altimeter reading during the
outage; engineers attribute the failure to the UAS exceeding its operational altitude.

6 Conclusion

We presented a novel SHM technique that enables both real-time assessment of the
system status of an embedded system with respect to temporal-logic-based specifications
and also supports statistical reasoning to estimate its health at runtime. To ensure
REALIZABILITY, we observe specifications given in two real-time projections of LTL
that naturally encode future-time requirements such as flight rules. Real-time health
modeling, e.g., using Bayesian networks allows mitigative reactions inferred from
complex relationships between observations. To ensure RESPONSIVENESS, we run both
an over-approximative, but synchronous to the real-time clock (RTC), and an exact,
but asynchronous to the RTC, observer in parallel for every specification. To ensure
UNOBTRUSIVENESS to flight-certified systems, we designed our observer algorithms
with a light-weight, FPGA-based implementation in mind and showed how to map
them into efficient, but reconfigurable circuits. Following on our success using rt-R2U2
to analyze real flight data recorded by NASA’s Swift UAS, we plan to analyze future
missions of the Swift or small satellites with the goal of deploying rt-R2U2 onboard.

14

References

1. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In: LICS. pp.
390–401. IEEE (1990)

2. Backasch, R., Hochberger, C., Weiss, A., Leucker, M., Lasslop, R.: Runtime verification for
multicore SoC with high-quality trace data. ACM Trans. Des. Autom. Electron. Syst. 18(2),
18:1–18:26 (2013)

3. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.A., Hallé, S.: MapReduce for parallel trace
validation of LTL properties. In: RV. LNCS, vol. 7687, pp. 184–198. Springer (2012)

4. Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky,
O., Tillmann, N. (eds.): Runtime Verification (RV), LNCS, vol. 6418. Springer (2010)

5. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order
temporal properties. In: FSTTCS. pp. 49–60 (2008)

6. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time properties. In: RV.
pp. 260–275. LNCS, Springer (2011)

7. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J.
Log. and Comp. 20, 651–674 (2010)

8. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. M. 20, 14:1–14:64 (2011)

9. Colombo, C., Pace, G., Abela, P.: Safer asynchronous runtime monitoring using compensa-
tions. FMSD 41, 269–294 (2012)

10. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University
Press, New York, NY, USA, 1st edn. (2009)

11. Divakaran, S., D’Souza, D., Mohan, M.R.: Conflict-tolerant real-time specifications in metric
temporal logic. In: TIME. pp. 35–42 (2010)

12. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded future. In:
RV, LNCS, vol. 5779, pp. 60–75. Springer (2009)

13. Fischmeister, S., Lam, P.: Time-aware instrumentation of embedded software. IEEE Trans.
Ind. Informatics 6(4), 652–663 (2010)

14. Geilen, M.: An improved on-the-fly tableau construction for a real-time temporal logic. In:
CAV. pp. 394–406 (2003)

15. Havelund, K.: Runtime verification of C programs. In: TestCom/FATES. LNCS, vol. 5047,
pp. 7–22. Springer (2008)

16. Ippolito, C., Espinosa, P., Weston, A.: Swift UAS: An electric UAS research platform for
green aviation at NASA Ames Research Center. In: CAFE EAS IV (April 2010)

17. Johnson, S., Gormley, T., Kessler, S., Mott, C., Patterson-Hine, A., Reichard, K., Philip Scan-
dura, J.: System Health Management: with Aerospace Applications. Wiley & Sons (2011)

18. Kleene, S.C.: Introduction to Metamathematics. North Holland (1996)
19. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of

recurrence equations. IEEE Trans. Comput. 22(8), 786–793 (Aug 1973)
20. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer

(2008)
21. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Logics of Programs, LNCS,

vol. 193, pp. 196–218. Springer (1985)
22. Lu, H., Forin, A.: The design and implementation of P2V, an architecture for zero-overhead

online verification of software programs. Tech. Rep. MSR-TR-2007-99 (2007)
23. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-response

properties. In: CAV. LNCS, vol. 4590, pp. 95–107. Springer (2007)
24. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and

continuous behaviors. In: Pillars of Comp. Science. pp. 475–505. Springer (2008)
25. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems. In: RV. pp.

310–324. LNCS, Springer (2011)
26. Reinbacher, T., Függer, M., Brauer, J.: Real-time runtime verification on chip. In: RV. LNCS,

vol. 7687, pp. 110–125. Springer (2012)
27. Schumann, J., Mbaya, T., Mengshoel, O., Pipatsrisawat, K., Srivastava, A., Choi, A., Darwiche,

A.: Software health management with Bayesian Networks. Innovations in Systems and SW
Engineering 9(4), 271–292 (2013)

15

28. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: To-
wards real-time, on-board, hardware-supported sensor and software health management for
unmanned aerial systems. In: PHM (2013)

29. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal
Methods in System Design 41(3), 236–268 (2012)

30. Thati, P., Roşu, G.: Monitoring Algorithms for Metric Temporal Logic specifications. ENTCS
113, 145–162 (2005)

31. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer
Science, John Wiley & Sons (1987), isbn: 3519021072

7 Appendix A – Proofs of Correctness

Theorem 5 (Correctness of the Observer for ¬ϕ). For any execution sequence ⟨Tϕ⟩,
the observer stated in Algorithm 7 implements en ⊧ ¬ϕ.

Algorithm 7 Observer for ¬ϕ.
1: At each new input Tϕ:
2: Tξ ← (¬ Tϕ.v, Tϕ.τe)
3: return Tξ

Proof. The theorem follows immediately from the definition of en ⊧ ¬ϕ and the
definition of an execution sequence.

16

Theorem 6 (Correctness of the Observer for τ ϕ). For any execution sequence ⟨Tϕ⟩,
the observer stated in Algorithm 8 implements en ⊧ τ ϕ.

Algorithm 8 Observer for τ ϕ. Initially, m↑ϕ =mτs = 0.
1: At each new input Tϕ:
2: Tξ ← Tϕ
3: if transition of Tξ occurs then
4: m↑ϕ ←mτs
5: end if
6: mτs ← Tϕ.τe + 1
7: if Tξ holds then
8: if m↑ϕ ≤ (Tξ.τe − τ) holds then
9: Tξ.τe ← Tξ.τe − τ

10: else
11: Tξ ← (,)
12: end if
13: end if
14: return Tξ

Proof. We first observe the equivalences

en ⊧ τ ϕ⇔ en ⊧ ◻[0,τ] ϕ,
⇔ en ⊧ ¬(trueU[0,τ] ¬ϕ),
⇔ ¬(∃i(i ≥ n) ∶ (i − n ∈ [0, τ] ∧ ei ⊧ ¬ϕ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ true)),
⇔ ¬(∃i(i ≥ n) ∶ (i − n ∈ [0, τ] ∧ ei ⊧ ¬ϕ ∧ true)),
⇔ ¬(∃i(i ≥ n) ∶ (i − n ∈ [0, τ] ∧ ei ⊧ ¬ϕ)),
⇔ ∀i(i ≥ n) ∶ ¬(i − n ∈ [0, τ] ∧ ei ⊧ ¬ϕ),
⇔ ∀i(i ≥ n) ∶ (¬(i − n ∈ [0, τ]) ∨ ei ⊧ ϕ),
⇔ ∀i(i ≥ n) ∶ (i − n ∈ [0, τ]→ ei ⊧ ϕ),
⇔ ∀i ∶ (i ∈ [n,n + τ]→ ei ⊧ ϕ).

Note that interval [n,n + τ] is never empty, since n, τ ∈ N0. Therefore, the equivalences
above holds iff a transition ofϕ occurred at a time at least n and no transition ofϕ
occurred since then until time n+τ (ensured by lines 3 and 6 and the valid (m↑ϕ, Tξ, τ)
check in line 8 of Algorithm 8).

The theorem follows.

17

Theorem 7 (Correctness of the Observer for ◻J ϕ). For any execution sequence ⟨Tϕ⟩,
the observer stated in Algorithm 9 implements en ⊧ ◻J ϕ.

Algorithm 9 Observer for ◻J ϕ.
1: At each new input Tϕ:
2: Tξ ← dur(J) Tϕ
3: if (Tξ.τe −min(J) ≥ 0) then
4: Tξ.τe ← Tξ.τe −min(J)
5: else
6: Tξ ← (,)
7: end if
8: return Tξ

Proof. We first observe the equivalences

en ⊧ ◻J ϕ

⇔ en ⊧ ¬ (trueU[min(J),max(J)] ¬ϕ),

⇔ ∀i(i ≥ n) ∶ (i − n ∈ [min(J),max(J)]→ ei ⊧ ϕ),

⇔ ∀i ∶ (i ∈ [n +min(J), n +max(J)]→ ei ⊧ ϕ). (1)

By Theorem 6 we have

en ⊧ τ ϕ⇔ ∀i ∶ (i ∈ [n,n + τ]→ ei ⊧ ϕ).

With τ = dur(J) we arrive at

en ⊧ dur(J) ϕ,

⇔ ∀i ∶ (i ∈ [n,n + dur(J)]→ ei ⊧ ϕ),

⇔ ∀i ∶ (i ∈ [n,n +max(J) −min(J)]→ ei ⊧ ϕ). (2)

By the Equivalences 1 and 2 we observe that both en ⊧ ◻J ϕ and en ⊧ τ ϕ require
that ϕ holds for an interval of length max(J)−min(J) = dur(J), however, en ⊧ ◻J ϕ
requires that ϕ holds for an interval that is min(J) ahead (i.e., in the future) of en ⊧ τ ϕ.
Subtracting min(J) (equals to a shift into the past by min(J) time stamps) from

en ⊧ dur(J) ϕ⇔ ∀i ∶ (i ∈ [n,n +max(J) −min(J)]→ ei ⊧ ϕ),

yields

∀i ∶ (i −min(J) ∈ [n,n +max(J) −min(J)]→ ei ⊧ ϕ),

⇔ ∀i ∶ (i ∈ [n +min(J), n +max(J) −min(J) +min(J)]→ ei ⊧ ϕ),

⇔ ∀i ∶ (i ∈ [n +min(J), n +max(J)]→ ei ⊧ ϕ),

⇔ ◻J ϕ (cf. Equation 1).

Since Algorithm 9 instantiates a τ ϕ observer in line 2 and subtracts min(J) from
the result, it establishes the required equivalence. The check in line 3 of Algorithm 9
prevents the observer from returning execution sequences where Tξ.τe ∉ N0.

The theorem follows.

18

Theorem 8 (Correctness of the Observer for ϕ∧ψ). For any two execution sequences
⟨Tϕ⟩, ⟨Tψ⟩, the observer stated in Algorithm 10 implements en ⊧ ϕ ∧ ψ.

Algorithm 10 Observer for ϕ ∧ ψ.
1: At each new input (Tϕ, Tψ):
2: if Tϕ holds and Tψ holds and qϕ ≠ () holds and qψ ≠ () holds then
3: Tξ ← (true,min(Tϕ.τe, Tψ.τe))
4: else if ¬Tϕ holds and ¬Tψ holds and qϕ ≠ () holds and qψ ≠ () holds then
5: Tξ ← (false,max(Tϕ.τe, Tψ.τe))
6: else if ¬Tϕ holds and qϕ ≠ () holds then
7: Tξ ← (false, Tϕ.τe)
8: else if ¬Tψ holds and qψ ≠ () holds then
9: Tξ ← (false, Tψ.τe)

10: else
11: Tξ ← (,)
12: end if
13: dequeue(qϕ, qψ, Tξ.τe)
14: return Tξ

Proof. To prove the correctness of Algorithm 10, it needs to be shown that both the
truth value Tξ.v and the time stamp Tξ.τe of the output tuple Tξ, generated in line 14 of
Algorithm 10, are correct – for arbitrary inputs.

a) Correctness of Tξ.v. The proof is by showing that a correct output verdict Tξ.v
of Algorithm 10 is equivalent to the result of a conjunction of the inputs encoded in
Kleene logic [49]. We then enumerate the inputs by means of a truth table and verify
that the proposed algorithm generates the correct outputs. Recall that the observer reads
tuples (Tϕ, Tψ) from the two synchronization queues qϕ and qψ and that the verdicts
Tϕ.v, Tψ.v ∈ {true, false}. Depending on the state of the synchronization queues, we
distinguish the following cases:

Case (i): if both qϕ and qψ are non-empty (i.e., both elements in the input (Tϕ, Tψ)
are available), the output is true only in case Tϕ.v = Tψ.v = true and false other-
wise.
Case (ii): if both qϕ and qψ are empty, the input tuple (Tϕ, Tψ) is empty too, thus,
the observer cannot produe a new output. We map this to a maybe output in Kleene
logic representation.
Case (iii): if either qϕ or qψ is empty, one element of the input tuple (Tϕ, Tψ) is
empty, and the result of the observer depends on the other, non-empty input.

We observe that with the encoding

a =

⎧⎪⎪
⎨
⎪⎪⎩

true if Tϕ.v = true ∧ qϕ ≠ (),
false if Tϕ.v = false ∧ qϕ ≠ (),
maybe otherwise.

b =

⎧⎪⎪
⎨
⎪⎪⎩

true if Tψ.v = true ∧ qψ ≠ (),
false if Tψ.v = false ∧ qψ ≠ (),
maybe otherwise.

the expected output verdict Tξ.v of a ϕ ∧ ψ observer is exactly the result of a ∧ b in
Kleene logic.

Table 1 enumerates the possible inputs of the algorithm in terms of a truth table.
For example, in case Tϕ.v is false, Tψ.v is true, synchronization queues qϕ and qψ are

19

Inputs Expected result Outputs of Algorithm 10
ϕ ψ qϕ qψ Tξ.v Tξ.τs (Tξ.v, Tξ.τe) line#
1 0 0

0 0

0 max(time stamp ϕ, time stamp ψ) (false,max(Tϕ.τe, Tψ.τe)) 5
2 0 1 0 time stamp of ϕ (false, Tϕ.τe)) 7
3 1 0 0 time stamp of ψ (false, Tψ.τe)) 9
4 1 1 1 min(time stamp ϕ, time stamp ψ) (true,min(Tϕ.τe, Tψ.τe)) 3
5 0 0

0 1

0 time stamp of ϕ (false, Tϕ.τe)) 7
6 0 1 0 time stamp of ϕ (false, Tϕ.τe)) 7
7 1 0 ? - (,) 11
8 1 1 ? - (,) 11
9 0 0

1 0

0 time stamp of ψ (false, Tψ.τe)) 9
10 0 1 ? - (,) 11
11 1 0 0 time stamp of ψ (false, Tψ.τe)) 9
12 1 1 ? - (,) 11
13 0 0

1 1

? - (,) 11
14 0 1 ? - (,) 11
15 1 0 ? - (,) 11
16 1 1 ? - (,) 11

Table 1. Enumeration of input combinations, expected results, and outputs of Algorithm 10. For
brevity, we use the abbreviations: ϕ = Tϕ.v, ψ = Tψ.v, and write 0 for false, 1 for true, and ? for
maybe. qϕ is set “1” iff qϕ = () and qψ is set “1” iff qψ = ().

non-empty (see #2 in Table 1), the expected output is a ∧ b = true ∧ false = false. In
case Tϕ.v is false, Tψ.v is true, and queue qϕ is empty, and qψ is non-empty (see #10 in
Table 1), the expected output is a ∧ b = maybe ∧ true = maybe.

It remains to be shown that Algorithm 10 generates these outputs. We study the
column “Outputs of Algorithm 10” of Table 1, which states Tξ.v as generated by
Algorithm 10 and the corresponding line number of the respective assignments. For
example, in case Tϕ.v is false and Tψ.v is true and synchronization queues qϕ and qψ
are non-empty (see #2 in Table 1), the algorithm returns Tξ.v = false, matching the
expected output.

We have shown the correctness of the truth value Tξ.v of the output tuple Tξ of
Algorithm 10 for all possible inputs; it remains to be shown that the corresponding time
stamp Tξ.τe of the output tuple Tξ is correct too.

b) Correctness of Tξ.τe. For analogous arguments as above, in cases where the
verdict of the computed output tuple Tξ.v is maybe, the corresponding time stamp Tξ.τe
is undefined too, see #7,8,10,12-16 in Table 1. For the remaining input conditions we
distinguish the following two cases:

Case (i): if either qϕ or qψ is empty and the verdict Tξ.v of the output tuple is false,
the time stamp of the output is the time stamp of the non-empty element in the input
tuple (Tϕ, Tψ), see #5,6,9,11 in Table 1.
Case (ii): if neither qϕ nor qψ is empty, the time stamp of the output depends on the
truth values of Tϕ.v and Tψ.v, see #2-4 in Table 1. In the special case that both Tϕ.v
and Tψ.v are false (#1 in Table 1), the time stamp of the output can be extended
to the maximum of the time stamps found in the input tuple (Tϕ, Tψ), see #1 in
Table 1.

For example, consider the queue contents qϕ = ((false,1), (true,10)) and qψ =
((false,5), (true,8)). When reading the input ((false,1),(false,5)) the observer can
already output (false,5); regardless of the truth values of Tϕ for times n ∈ [2,5],

20

the result will be false. Applying dequeue(qϕ, qψ,5) yields qϕ = ((true,10)) and
qψ = ((true,8)).

For similar arguments, the scenario described in #2,3 of Table 1 requires to output
the time stamp of the element in the input tuple (Tϕ, Tψ) whose truth value is false. If
both Tϕ.v and Tψ.v are true (#4 in Table 1), the output can only be resolved until the
minimum (i.e., the earlier) of the time stamps found in the input tuple (Tϕ, Tψ). For
example, consider the queue content: qϕ = ((true,1), (false,10)) and qψ = ((true,5),
(false,8)). When reading the input ((true,1),(true,5)) the observer needs to output
(true,1). The next input ((false,10),(true,5)) generates the output (false,10), i.e., the
output is false for times n ∈ [2,10]. Results for the remaining cases are derived in a
similar way.

It remains to be shown that Algorithm 10 generates these time stamps. Again, we
study the column “Outputs of Algorithm 10” of Table 1, which states Tξ.τe as generated
by Algorithm 10 and the corresponding line number of the respective assignment. For
example, in case Tϕ.v is false and Tψ.v is true and synchronization queues qϕ, qψ
are non-empty (see #2 in Table 1), the algorithm returns Tξ.τe = Tϕ.τe, matching the
expected output. The same holds for the remaining cases.

We have shown the correctness of both the output verdict Tξ.v and the time stamp
Tξ.τe of the output tuple Tξ of Algorithm 10 for all possible inputs.

The theorem follows.

21

Theorem 9 (Correctness of the Observer for ϕUJ ψ). For any two execution se-
quences ⟨Tϕ⟩, ⟨Tψ⟩, the observer stated in Algorithm 12 implements en ⊧ ϕUJ ψ.

Algorithm 12 Observer for ϕUJ ψ. Initially,mpre =m↑ϕ = 0,m↓ϕ = −∞, and p = false.
1: At each new input (Tϕ, Tψ) in lockstep mode:
2: if transition of Tϕ occurs then
3: m↑ϕ ← τe − 1
4: mpre ← −∞
5: end if
6: if transition of Tϕ occurs and Tψ holds then
7: Tϕ.v, p← true, true
8: m↓ϕ ← τe
9: end if

10: if Tϕ holds then
11: if Tψ holds then
12: if (m↑ϕ +min(J) < τe) holds then
13: mpre ← τe
14: return (true, τe −min(J))
15: else if p holds then
16: return (false,m↓ϕ)
17: end if
18: else if (mpre + dur(J) ≤ τe) holds then
19: return (false,max(m↑ϕ, τe −max(J)))
20: end if
21: else
22: p← false
23: if (min(J) = 0) holds then
24: return (Tψ.v, τe)
25: end if
26: return (false, τe)
27: end if
28: return (,)

The observer for ϕUJ ψ, as stated in Algorithm 12, expects a tuple (Tϕ, Tψ) as input.
Similar to the observer for ϕ ∧ ψ, Tϕ of this tuple is an element from the execution
sequence ⟨Tϕ⟩ stored in synchronization queue qϕ and Tψ of this tuple is an element
from the execution sequence ⟨Tψ⟩ stored in synchronization queue qψ. Input tuples are
processed in a lockstep mode to ensure that the observer outputs only a single tuple at
each run, thereby, avoiding additional output buffers, which would account for additional
hardware resources. This lockstep mode is achieved by the following transformation
on the input tuple (Tϕ, Tψ): (Tϕ, Tψ) is transformed into (possibly several) tuples
(T ′ϕ, T

′
ψ), (T

′′
ϕ , T

′′
ψ), . . . , such that T ′ϕ.τe = T

′
ψ.τe holds and for the time stamp T ′′ϕ .τe of

the next tuple (T ′′ϕ , T
′′
ψ) it holds that T ′′ϕ .τe = T

′
ϕ.τe + 1.

The motivation for the lockstep mode stems from the intended hardware implementa-
tion of the observer. To illustrate, we assume the existence of a correct observer, possibly
implemented in software, for ϕU[2,3] ψ and that the execution sequences stored in the
two synchronization queues qϕ and qψ describe the executions en ⊧ ϕ and en ⊧ ψ over
times n ∈ [0,25] as shown below:

22

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

en ⊧ ϕ

en ⊧ ψ

In a non-lockstep mode implementation, the observer for en ⊧ ϕU[2,3] ψ may
read the following sequence of tuples (Tϕ, Tψ) from qϕ and qψ4: ((false,9), (false,9)),
((true,19), (true,19)), ((false,21), (true,21)),((false,25), (false,25)). The observer
will produce the following outputs:

1. For input ((false,9), (false,9)), the observer returns (false,9).
2. For input ((true,19), (true,19)), the observer returns (true,17).
3. For input ((false,21), (true,21)), the observer returns (true,18) and (false,21).
4. For input ((false,25), (true,25)), the observer returns (false,25).

To comply with our RESPONSIVENESS requirement, our observers need to ensure
that any input tuple is processed within a tight time bound. This includes reading a new
input tuple from the synchronization queues, calculating the output tuple, and committing
this new tuple to the observer’s output. This is feasible for inputs (1), (2), and (4) in the
example above where one output tuple is generated at a time. For input (3), however, the
observer needs to output two tuples at the same time.

To implement this functionality in hardware an additional output buffer to temporarily
store the second tuple while the first one is committed is required. This accounts for
an additional clock cycle to commit the second tuple (false,21) to the output and
additional hardware resources to implement and control this buffer. To avoid a blowup
of the hardware design, we opted to design our ϕUJ ψ observer to work on inputs
given in lockstep mode. For input (3) from the example above, our implementation
will transform the input ((false,21), (true,21)) into ((false,20), (true,20)) (3.1) and
((false,21), (true,21)) (3.2) and calculate:

3.1 For input ((false,20), (true,20)), the observer in Algorithm 12 returns (true,18).
3.2 For input ((false,21), (true,21)), the observer in Algorithm 12 returns (false,21).

The lockstep mode, thus, helps us to guarantee that, for any input tuple, the observer
is not required to output multiple tuples. This avoids additional hardware overhead for
output buffers and meets our UNOBTRUSIVENESS requirement.

Proof. Theorem 9 holds if we can show that both directions of the statement “The
observer for ϕUJ ψ stated in Algorithm 12 returns (true, n) iff en ⊧ ϕUJ ψ” hold:

If: The observer for ϕUJ ψ returns (true, n) if en ⊧ ϕUJ ψ holds.
Only If: en ⊧ ϕUJ ψ holds if the observer for ϕUJ ψ returns (true, n).

If we show the correctness of both statements, Theorem 9 holds. We will start by proving
the following lemma that helps us to simplify the proof of Theorem 9.

Lemma 1 (Unrolling). The observer in Algorithm 12 decides the truth value of en ⊧
ϕUJ ψ, where min(J) > 0, at a time n′ bounded by n′ ≤ n +max(J).

4 To simplify the discussion (Tϕ, Tψ) is such that Tϕ.τe = Tψ.τe.

23

Proof. From the definition of en ⊧ ϕUJ ψ we have

en ⊧ ϕUJ ψ

⇔ ∃i(i ≥ n) ∶ (i − n ∈ J ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ),

⇔ ∃i(i ≥ n) ∶ (i − n ∈ [min(J),max(J)] ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ),

⇔ ∃i(i ≥ n) ∶ (i ∈ [n +min(J), n +max(J)] ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ).
(3)

In order to build a correct observer algorithm, we can incrementally step through all i (i.e.,
τe) starting from n until we (a) find a location i where Equation 3 holds (then the result
is en ⊧ ϕUJ ψ), or (b) we have reached an i > n +max(J) where Equation 3 cannot
hold anymore because i ∉ [n +min(J), n +max(J)] (then the result is en ⊭ ϕUJ ψ).

We now show that when reaching i = n+max(J), the observer stated in Algorithm 12
has already decided the truth value of en ⊧ ϕUJ ψ. We distinguish three cases depending
on the value of i:

Case (i): n ≤ i < n+min(J), since i ∉ [n+min(J), n+max(J)], Equation 3 does
not hold, but might hold at a later i, i.e., at i > n +min(J). Observe that this is captured
by the check at line 12 in Algorithm 12. For n ≤ i < n+min(J) the check does not hold
and the Algorithm will not output a verdict for en ⊧ ϕUJ ψ, i.e., returns (,) on line
28.

Case (ii): n + min(J) ≤ i ≤ n + max(J), since i ∈ [n + min(J), n + max(J)],
Equation 3 can hold if we find an i for which ei ⊧ ψ and ∀j(n ≤ j < i) ∶ ej ⊧ ϕ holds.
We distinguish two cases: we first find an i where ϕ does not hold or we first find an i
for which both ei ⊧ ψ and ∀j(n ≤ j < i) ∶ ej ⊧ ϕ hold. For the former, Equation 3 does
not hold. The algorithm immediatelly returns (false, τe) in line 26 (since Tϕ does not
hold). For the latter, Equation 3 holds, and the algorithm returns (true, τe −min(J)) in
line 14. By our assumptions, we have τe = i and τe −min(J) = n.

Note that the Algorithm returns a verdict at a time earlier than i = n +max(J) in
both cases (i) and (ii).

Case (iii): i = n +max(J) + 1, since i ∉ [n +min(J), n +max(J)], Equation 3
does not hold, and cannot hold for any later i. Note that this is captured by the predicates
in lines 18 and 19.

Combining the arguments of i-iii), we have that Algorithm 12 decides the truth value
of en ⊧ ϕUJ ψ where min(J) > 0 at a time n′ not later than n′ ≤ n +max(J) in all
cases.

The lemma follows.

We continue with the proof of Theorem 9. We first show that:

If: The observer for ϕUJ ψ returns (true, n) if en ⊧ ϕUJ ψ holds. Assume by means
of a contradiction that en ⊧ ϕUJ ψ does not hold and the observer returns (true, n). We
observe that Algorithm 12 may return tuples T where T.v = true either in line 14 (case
(i)) or in line 24 (case (ii)).

Case (i): the observer returns (true, τe −min(J)) in line 14. We have witnessed that
both Tϕ and Tψ held at time τe (lines 10 and 11) and that (m↑ϕ +min(J) < τe) holds.
Observe that this implies that ∀j(τe −min(J) ≤ j < τe) ∶ e

j ⊧ ϕ holds too. Further, by
the definition of en ⊧ ϕUJ ψ we have

en ⊧ ϕUJ ψ⇔ ∃i(i ≥ n) ∶ (i − n ∈ J ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ),
⇔ ∃i(i ≥ n) ∶ (i − n ∈ [min(J),max(J)] ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ).

24

we may choose i = τe and substitute n = τe −min(J). Combined with the observation
from above, we arrive at

eτe−min(J) ⊧ ϕUJ ψ⇔ (min(J) ∈ [min(J),max(J)] ∧ eτe ⊧ ψ ∧ true),
⇔ true ∧ eτe ⊧ ψ ∧ true⇔ eτe ⊧ ψ.

Since we can reach line 14 only in case Tψ holds (ensured by line 11) at time τe, we
have e(τe−min(J)) ⊧ ϕUJ ψ, contradicting our assumption for case (i).

Case (ii): the observer returns (true, n) in line 24. We have witnessed that Tϕ does
not hold (the check in line 10 does not hold) at time τe and that min(J) = 0 (line 23).
By the definition of en ⊧ ϕUJ ψ (we substitute min(J) = 0 and i = τe):

en ⊧ ϕU[0,max(J)] ψ

⇔ ∃i(i ≥ n) ∶ (i − n ∈ J ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ false),
⇔ ∃i(i ≥ n) ∶ (τe − n ∈ [0,max(J)] ∧ eτe ⊧ ψ ∧ ∀j(n ≤ j < τe) ∶ e

j ⊧ false), (4)

we observe that ϕU[0,max(J)] ψ can only hold (under the precondition that Tϕ does not
hold) in case we find a j that does not satisfy (n ≤ j < τe), because the right hand side of
the conjunction in Equation 4 vacuously holds – regardless of the truth value of ϕ. This
is exactly the case when we choose τe = n. Then, τe − n = 0 and since 0 ∈ [0,max(J)]
holds, the left hand side of the conjunction in Equation 4 holds. We arrive at

eτn ⊧ ϕU[0,max(J)] ψ⇔ (τe = n) ∶ (true ∧ eτe ⊧ ψ ∧ true).

Thus, in case min(J) = 0 and eτe ⊭ ϕ, the truth value of eτe = ϕUJ ψ is equal to
eτe ⊧ ψ. This is ensured by line 23, contradicting our assumption in case (ii).

Since we arrived at a contradiction for both cases, we have shown that: the observer
for ϕUJ ψ stated in Algorithm 12 returns (true, n) if en ⊧ ϕUJ ψ holds.

To complete the proof it remains to be shown that:

Only If: en ⊧ ϕUJ ψ holds if the observer for ϕUJ ψ returns (true, n). The proof is by
induction on n ∈ N0.

Base Case (n = 0): we consider the four possible truth value combinations of the input
tuple (Tϕ,Tψ).

Case (i): assume both Tϕ and Tψ do not hold. We have that e0 ⊭ ϕ and e0 ⊭ ψ. By
substituting into the definition of en ⊧ ϕUJ ψ we get

e0 ⊧ ϕUJ ψ

⇔ ∃i(i ≥ 0) ∶ (i − 0 ∈ [min(J),max(J)] ∧ ei ⊧ ψ ∧ ∀j(0 ≤ j < i) ∶ ej ⊧ ϕ).

By our assumption e0 ⊭ ϕ, ∀j(0 ≤ j < i) ∶ ej ⊧ ϕ evaluates to true iff i = 0. We
distinguish two cases (a) min(J) = 0 and (b) min(J) > 0. Since Tϕ does not hold, we
only consider lines 22-26 of Algorithm 12.

(a) e0 ⊭ ϕUJ ψ since 0 ∈ [0,max(J)] holds, however, e0 ⊭ ψ. We observe that the
algorithm returns (false,0) for this case in line 24.

(b) e0 ⊭ ϕUJ ψ since 0 ∉ [min(J),max(J)] with min(J) > 0. We observe that the
algorithm returns (false,0) for this case in line 26.

25

By the arguments from above, the induction base follows in this case.

Case (ii): assume Tϕ does not hold and Tψ holds. We have that e0 ⊭ ϕ and e0 ⊧ ψ.
For analogous arguments as in case (i), we distinguish the two cases (a) min(J) = 0 and
(b) min(J) > 0.

(a) e0 ⊧ ϕUJ ψ since 0 ∈ [0,max(J)] holds and e0 ⊭ ψ. We observe that the algorithm
returns (true,0) for this case in line 24.

(b) e0 ⊭ ϕUJ ψ since 0 ∉ [min(J),max(J)] with min(J) > 0. We observe that the
algorithm returns (false,0) for this case in line 26.

By the arguments from above, the induction base follows in this case.

Case (iii): assume Tϕ holds and Tψ does not hold. We have that e0 ⊧ ϕ and e0 ⊭ ψ.
We distinguish two cases (a) min(J) = max(J) = 0 and (b) min(J) > 0. Since Tϕ
holds, we will only consider lines 10-20 of Algorithm 12.

(a) e0 ⊭ ϕUJ ψ since with i ∈ [0,0] we have e0 ⊭ ψ. Initially, we have mpre = 0
and m↑ϕ = 0. Therefore, the condition in line 18 holds and the algorithm returns
(false,0) for this case in line 19.

(b) Since e0 ⊧ ϕ and min(J) > 0, the validity of e0 ⊧ ϕUJ ψ cannot be determined at
time n = 0 as we can choose an arbitrary i ∈ [min(J),max(J)] and need to test
ei ⊧ ψ and ∀j(0 ≤ j < i) ∶ ej ⊧ ϕ at times i > n. The induction base follows by
Lemma 1.

By the arguments from above, the induction base follows in this case.

Case (iv): assume both Tϕ and Tψ hold. We have that e0 ⊧ ϕ and e0 ⊧ ψ. As in
cases (i) and (ii), we distinguish the two cases (a) min(J) = 0 and (b) min(J) > 0.

(a) e0 ⊧ ϕUJ ψ since with i ∈ [0,max(J)] we choose i = 0 we have e0 ⊧ ψ. Since
ϕ holds, we must have witnessed a transition of ϕ (by definition, for times
prior to 0, ϕ does not hold). The check in line 2 holds and we have m↑ϕ = −1 and
mpre = −∞. The condition in line 12 holds (−1 + 0 < −0) and the algorithm returns
(true,0) for this case in line 14.

(b) Since e0 ⊧ ϕ and min(J) > 0, the validity of e0 ⊧ ϕUJ ψ cannot be determined at
time n = 0. For analogous arguments as in case (iii.b), the induction base follows by
Lemma 1.

By the arguments from above, the induction base follows in this case.

Induction Step (n − 1→ n) with the induction hypothesis: assume that en−1 ⊧ ϕUJ ψ
if the observer for ϕUJ ψ returns (true, n − 1) holds for n − 1 ≥ 0. We will show that it
holds for n, too. We consider the same cases (i) to (iv) for the truth values of the input
(Tϕ, Tψ) as in the base case.

Case (i): assume both Tϕ and Tψ do not hold. For analogous arguments as in the
base case, the algorithm returns (false, n) in either line 24 or 26.

By the arguments from above, the induction step follows in this case.

Case (ii): assume Tϕ does not hold and Tψ holds. We distinguish two cases for ϕ: a
transition of ϕ did not (ii.a) or did occur at time n (ii.b).

26

(ii.a) For the same arguments as in the base case, the algorithm returns (true, n) in case
min(J) = 0 (line 24) and (false, n) if min(J) > 0 (line 26). Thus, the induction
step follows in this case.

(ii.b) We have that p = true, m↓ϕ = n, and Tϕ.v = true. Clearly, the algorithm only
executes lines 11-17 in this case. We need to distinguish the following two cases
(ii.b.1) The latest transition of ϕ occurred at a time earlier than n −min(J)
and (ii.b.1) the latest transition of ϕ did occur at a time later than or equal to
n −min(J).

(ii.b.1) By assumption for this case we have m↑ϕ < n−min(J) and by the semantics of
the ϕUJ ψ operator we know that the en ⊧ ϕUJ ψ holds up to time n−min(J).
We observe that in this case, the check in line 12 holds and the algorithm returns
(true, n −min(J)) in line 14. The induction step follows in this case.

(ii.b.2) By assumption for this case and the semantics of the ϕUJ ψ operator we know
that the en ⊭ ϕUJ ψ holds up to time n. Intuitively, the number of time stamps
we saw ϕ to be true was shorter than min(J). We observe that in this case, the
check in line 12 does not hold. Since p is true the check on line 15 holds and
the algorithm returns (false, n) in line 16. The induction step follows in this
case.

By the arguments from above, the induction step follows in all three cases.

Case (iii): assume Tϕ holds and Tψ does not hold. We distinguish two cases for ϕ: a
transition of ϕ did not (iii.a) or did occur at time n (iii.b).

(iii.a) We distinguish two cases: min(J) = max(J) = 0 (iii.a.1) and (min(J) > 0) ∧
(max(J) > 0) (iii.a.2).

(iii.a.1) By the assumption dur(J) = 0 and mpre ≤ n trivially holds, the algorithm
returns (false, n) in line 19. Thus, the induction step follows in this case.

(iii.a.2) Suppose that the predicate in line 18 holds. In this case we observe that there
is no previous i ∶ (τe − dur(J) ≤ i ≤ τe) for that the algorithm returned
(true, i−min(J)) in line 14. If this would be the case we would have set mpre

to i in line 13 and the predicate in line 18 would not hold anymore. By the
definition of en ⊧ ϕUJ ψ we have

en ⊧ ϕUJ ψ⇔ ∃i(i ≥ n) ∶ (i − n ∈ J ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ false)

and with the observation from above, en ⊧ ϕUJ ψ can only hold for an i > τe.
This implies that en ⊧ ϕUJ ψ does not hold for an n up to τe −max(J). Since
the algorithm returns (false, n −max(J)) in line 19, the induction step follows
in this case. In case we have witnessed a transition of ϕ in the meantime
we have m↑ϕ ≥ n −max(J). Then, by the semantics of the ϕUJ ψ operator,
en ⊧ ϕUJ ψ cannot hold until a time stamp n that is equal to the time stamp
of the transition of ϕ, stored in m↑ϕ. In this case, the algorithm returns
(false,m↑ϕ) in line 19 and the induction step follows.

(iii.b) We have that m↑ϕ = n − 1, and mpre = −∞. Then, (mpre + dur(J) ≤ n) holds.
We distinguish two cases: min(J) = max(J) = 0 (iii.b.1) and (min(J) > 0) ∧
(max(J) > 0) (iii.b.2).

(iii.b.1) By our assumption min(J) =max(J) = 0 we arrive at

en ⊧ ϕU[0,0] ψ⇔ ∃i(i ≥ n) ∶ (i − n ∈ [0,0] ∧ ei ⊧ ψ ∧ ∀j(n ≤ j < i) ∶ ej ⊧ ϕ).

For n = i, i − n ∈ [0,0] holds, however, by our assumption for this case
(Tϕ holds and Tψ does not hold), we immediately have that ei ⊭ ψ and thus
en ⊭ ϕU[0,0] ψ. Note that the algorithm returns (false,max(n − 1, n)) in line
19, which simplifies to (false, n). The induction step follows in this case.

27

(iii.b.2) By assumption min(J) > 0 and since max(J) ≥min(J), the algorithm returns
(false, n − 1) in line 19. The induction step follows in this case.

By the arguments from above, the induction step follows in both cases.

Case (iv): assume both Tϕ and Tψ hold. We distinguish two cases for ϕ: a of ϕ
did not (iv.a) or did occur at time n (iv.b).

(iv.a) We distinguish two cases min(J) = 0 (iv.a.1) and min(J) > 0 (iv.a.2).
(iv.a.1) (m↑ϕ +min(J) < n) holds and the algorithm returns (true, n). The induction

step follows in this case.
(iv.a.2) (m↑ϕ +min(J) < n) only holds if the latest transition occurred at least

min(J) time units in the past. If this is the case, the algorithm returns (true, n−
min(J)). By similar arguments as in the base case, the induction step follows
in this case. Suppose that the latest transition of ϕ occurred at a time later
than n −min(J). Then, the induction step follows by Lemma 1.

(iv.b) We have that m↑ϕ = n − 1 and mpre = −∞. We distinguish two cases min(J) = 0
(iv.b.1) and min(J) > 0 (iv.b.2).

(iv.b.1) (m↑ϕ +min(J) < n) holds and the algorithm returns (true, n). The induction
step follows in this case.

(iv.b.2) (m↑ϕ +min(J) < n) does not hold. The induction step follows by Lemma 1.

By the arguments from above, the induction step follows in both cases.

The theorem follows.

28

8 Appendix B – Proofs of Complexity Results

Theorem 10 (Space Complexity of Asynchronous Observers). The respective asyn-
chronous observer for a given MTL specification ϕ has a space complexity, in terms of
memory bits, bounded by (2 + ⌈log2(n)⌉) ⋅ (2 ⋅m ⋅ p), where m is the number of binary
observers (i.e., ϕ ∧ ψ or ϕUJ ψ) in ϕ, p is the worst-case delay of a single predecessor
chain in AST(ϕ), and n ∈ N0 is the time stamp it is executed.

Proof. We first make the following observations:

a) The asynchronous observer algorithms for unary MTL operators, i.e., τ ϕ (Algo-
rithm 8), τ ϕ (Algorithm 9), and ¬ϕ (Algorithm 7), are memory-less, i.e., do not
use synchronization queues.

b) The asynchronous observer algorithms for binary MTL operators, i.e., ϕ ∧ ψ (Al-
gorithm 10) and ϕUJ ψ (Algorithm 12) use two synchronization queues, qϕ and
qψ . The sizes ∣qϕ∣ and ∣qψ ∣ are assigned in step MA3 of the synthesis procedure and
depend on the time bounds assigned to the observers to compute their subformulas
ϕ and ψ.

For example, the size of the synchronization queues of the observers required to
evaluate the specification 100 ϕ1 ∧ 10 ψ1 depends on the time bounds 100 and 10
assigned to the subformulas ϕ1 and ψ1. The algorithm for assigning queue sizes assigns
∣qψ1 ∣ = 100 and ∣qϕ1 ∣ = 10. Now suppose that subformula ϕ1 is computed by another
observer (e.g., ϕ1 ∶= ¬ 50 ϕ11), then ∣qψ1 ∣ = 100 + 50 = 150.

In the general case, for an arbitrary MTL specification ϕ, the maximum queue size
assigned by the algorithm for assigning queue sizes equals to the weight of the longest
path in AST(ϕ); the weight on the edges is the value computed by wcd(�), where �
is the observer for the respective subformula of ϕ. We write p to denote the weight of
this longest path. For example, the longest path in AST(ϕ) of (100 (¬ 50 ϕ11)) ∧
(140 ψ1) is 150. Consequently, all other queue sizes are equal or less than p. With the
number of observers for binary operators in ϕ being equal to m, the total number of
queues created for ϕ is, by observation b), equal to 2 ⋅m. Then, the total size of all queues
is bounded by 2 ⋅m ⋅ p. Recall that, a single element T = (v, τe) in a synchronization
queue accounts for w = ⌈log2(n)⌉ + 2 bits. We need ⌈log2(n)⌉ bits to store the time
stamp T.τe and two additional bits to encode the three valued verdict T.v.

For a given MTL specification ϕ, we thus arrive at a worst-case space complexity, in
terms of memory bits, of (2+ ⌈log2(n)⌉) ⋅ (2 ⋅m ⋅ p) for an asynchronous observer for ϕ.

The theorem follows.

29

Theorem 11 (Time Complexity of Asynchronous Observers). The respective asyn-
chronous observer for a given MTL specification ϕ has an asymptotic time complexity of
O(log2 log2max(p,n) ⋅ d), where p is the maximum worst-case-delay of any observer

in AST(ϕ), d the depth of AST(ϕ), and n ∈ N0 the time stamp it is executed.

Proof. As shown in [50] one can construct circuits that perform addition of two integers
of bit complexity w ∈ N within time O(log2(w)). Subtraction and relational operators
as required by the asynchronous observer algorithms can be built around adders. We
observe that, when Add(⟨a⟩, ⟨b⟩, c) is a ripple carry adder for arbitrary length unsigned
vectors ⟨a⟩ and ⟨b⟩ and c the carry in, then a subtraction of ⟨a⟩ − ⟨b⟩ is equivalent to
Add(⟨a⟩, ⟨b⟩,1), where b denotes the bitwise negation of vector b. Relational operators
can be built around adders in a similar way, for example, as described in [51, Chap. 6].

Since evaluating any of the conditionals and predicates (for example, the check in
line 8 in Algorithm 8) occuring in the asynchronous observer algorithms at time n ∈ N0

requires addition of integers of bit complexity at most max(log2(p), log2(n)), we arrive
at an asymptotic time complexity of O(log2 log2max(p,n)) for any of the proposed
asynchronous observers, executed at time n.

For a given MTL specification ϕ, we can determine its depth d by the number of
nodes of the longest-path in the parse tree of ϕ. We then arrive at an asymptotic time
complexity of O(d ⋅ log2 log2max(p,n)) for an asynchronous observer for ϕ.

The theorem follows.

30

êval (¬ϕ)

y1 = i1
y2 = ¬(i1 ⊕ i2)

two-input gates: 1

i2

i1

y2

y1

⊕

êval (ϕ ∧ ψ)

y1 = (i11∧i12)∨(i11∧¬i22)∨(¬i12∧i21)∨
(i21 ∧ i22)
y2 = i12 ∨ i22
two-input gates: 8

i11

i12

i21

i22

y1

y2

êval (τ ϕ)

y1 = (¬k ∧ ¬i2) ∨ i1
y2 = i2
k = 1 if τ = 0 and k = 0 othw.

two-input gates: 2

i1

k

i2

y1

y2

êval (◻J ϕ)

y1 = (¬i1 ∨ i1)
y2 = (i1 ∧ i2)

two-input gates: 2

i1

i2

y1

y2

êval (ϕUJ ψ)

y1 = i11∨(¬i12∧ i21)∨(¬i12∧ i22)∨
(¬i12 ∧ ¬k) ∨ (i21 ∧ i22)
y2 = i11 ∨ (¬i12 ∧ i21 ∧ i22)
k = 1 if min(J) = 0 and k = 0 othw.

two-input gates: 11

i11

i12

i21

i22

k

y1

y2

Fig. 4. Mapping of synchronous MTL observers to circuits of two-input gates.

31

Theorem 12 (Circuit-Size Complexity of Synchronous Observers). For a given MTL
formula ϕ, the circuit to monitor êval (ϕ) has a circuit-size complexity bounded by 11 ⋅m,
where m is the number of observers in AST(ϕ).

Proof. We want to show that the circuit required to implement a synchronous observer to
monitor an arbitrary MTL specification ϕ has a circuit-size complexity [62] bounded by
11 ⋅m, where m is the number of observers in AST(ϕ). This statement holds, if we can
show that any of the synchronous observers for êval (¬ϕ), êval (ϕ ∧ ψ), êval (τ ϕ),
êval (◻J ϕ), and êval (ϕUJ ψ) can be built with at most 11 two-input gates. The circuits
in Figure 4 show that any of the synchronous observers can be built with at most 11
two-input gates.

The theorem follows.

32

Theorem 13 (Circuit-Depth Complexity of Synchronous Observers). For a given
MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-depth complexity of 4 ⋅ d.

Proof. We want to show that the circuit for a synchronous observer to monitor an
arbitrary MTL formula ϕ has a circuit-depth complexity [62] bounded by 4 ⋅d, where d is
the depth of AST(ϕ). This statement holds, if we can show that any of the synchronous
observers can be built with a circuit of depth at most 4. From Figure 4 we can observe
the depth of these circuits:

1. êval (¬ϕ) circuit depth: 1
2. êval (ϕ ∧ ψ) circuit depth: 3
3. êval (τ ϕ) circuit depth: 2
4. êval (◻J ϕ) circuit depth: 1
5. êval (ϕUJ ψ) circuit depth: 4

The theorem follows.

33

9 Appendix C – Simulation Results

In what follows, we will discuss simulation runs we recorded from a full-fledged VHDL
Register Transfer Level (RTL) hardware simulation of the deployment of the rt-R2U2 to
the Swift UAS. In this simulation, the rt-R2U2 runs with a clock frequency of 100 MHz
and new sensor data is provided from the UAS with a frequency of 10 Hz. The hardware
design processes 37,418 individual sensors readings (i.e, there are 37,418 individual
laser altimeter readings, 37,418 individual barometric altimeter readings, . . .). Table. 2
summarizes the relevant signals required to understand the simulation traces.
Discussion of the simulation trace in Fig. 5. At the cursor position (red, right), the time
of the RTC (signal s rtc timestamp) equals to n = 2619 and the UAS on-board sensors
indicate: an increase in the baro-metric altitude signal (see input signal baro altitude
in category Swift UAS sensor data), an increase in the laser altitude signal (see signal
laser altitude), a positive vertical velocity (see signal vertical velocity), and a significant
pitching of the UAS (see signal euler pitch angle). The atomic propositions as calculated
by runtime observers of the rt-R2U2 capture this behavior: signal sigma s b (baro alt
up) evaluates to true, i.e., the respective hardware observer of the rt-R2U2 determined
that e2619 ⊧ σSB↑

holds. Similarly, the other atomic propositions (as shown in Fig. 5)
of the specification are evaluated to: e2619 ⊭ σSB↓

, e2619 ⊧ σSL↑
, and e2619 ⊭ σSL↓

.
Additionally (not explicitly mentioned in Fig. 5) the example uses the atomic propo-
sitions: σSP ↑

= (pitch ≥ 5○) and σSP ↓
= (pitch ≤ 2○) to monitor a significant up-

/down pitching of the UAS (from the IMU sensors). σSV ↑
= (vel up ≥ 2m

s
) and

σSV ↓
= (vel up < −2m

s
) to monitor a significant up/down velocity of the UAS (from

the IMU sensors). σSct = (cmd == takeoff) and σScl
= (cmd == land) to monitor if

takeoff/land commands were received from the ground station. σSh
= (AltL ≥ 600ft)

to monitor if the laser altimeter of the UAS indicates an altitude greater then 600 ft (the
intended flight height). The verdicts computed by the respective hardware observers of
the rt-R2U2 for these atomic propositions are e2619 ⊧ σSP ↑

, e2619 ⊭ σSP ↓
, e2619 ⊭ σSct ,

e2619 ⊭ σScl
, and e2619 ⊧ σSh

.
Discussion of the simulation trace in Fig. 6. Initially, all inputs to the altimeter health
model indicate an increasing altitude (i.e., en ⊧ σSB↑

, en ⊧ σSL↑
, and en ⊧ ϕSS↑

). The
posterior marginals Pr(baro alt=OK ∣ π ⊧ {σSB↑

, σSL↑
, ϕSS↑

}), and Pr(baro alt=BAD ∣
π ⊧ {σSB↑

, σSL↑
, ϕSS↑

}), and Pr(laser alt=OK ∣ π ⊧ {σSB↑
, σSL↑

, ϕSS↑
}), and Pr(laser alt=BAD

∣ π ⊧ {σSB↑
, σSL↑

, ϕSS↑
}), as calculate by higher level reasoning module of the rt-

R2U2, show a high likelihood (belief) of both a healthy laser altimeter reading and
a healthy barometer altimeter reading. Then, at the cursor position (red), due to the
outage of the laser altimeter, en ⊭ σSL↓

holds and indicates a decrease in altitude, while
the other inputs to the altimeter health model disagree and indicate an increase (i.e.,
en ⊧ σSB↑

, en ⊧ ϕSS↑
still hold). This is revealed by the new health assessment computed

by the rt-R2U2: we see a significant drop in the health assessment of the laser altimeter
reading (signal Pr(laser alt=OK ∣ π ⊧ {σSB↑

, σSL↑
, ϕSS↑

})), while the belief in a healthy
altimeter reading remains high (signal Pr(baro alt=OK ∣ π ⊧ {σSB↑

, σSL↑
, ϕSS↑

})).

34

Table 2. Interpretation of the simulation signals in Fig. 5 and Fig. 6: RTC = Real Time Clock

Signal Name Interpretation
rt-R2U2 System Signals

s clk system clock of the rt-R2U2
s reset n asynchronous reset of the rt-R2U2 (issued when low)

RTC related Signals
s rtc clock clock signal generated by the RTC

s rtc timestamp counter value of the RTC (i.e., time stamp n)
Inputs: Sensor RAW data as transferred over the communication bus of the Swift UAS

baro altitude altitude in ft as measured by the onboard baro-metric altimeter
laser altitude altitude in ft as measured by the onboard laser altimeter

vertical velocity vertical velocity in m
s

as measured by the onboard IMU
euler pitch angle euler pitch angle in degree as measured by the onboard IMU
takeoff command set if Swift UAS received takeoff command from ground station

land command set if Swift UAS received land command from ground station
Outputs: Atomic Propositions of the specification, calculated by the rt-R2U2

sigma S b baro-metric altitude: truth values of en ⊧ σSB↑ and en ⊧ σSB↓

sigma S l laser altitude: truth values of en ⊧ σSl↑ and en ⊧ σSL↓

sigma S v vertical velocity: truth values of en ⊧ σSV ↑ and en ⊧ σSV ↓

sigma S p pitch angle: truth values of en ⊧ σSP ↑ and en ⊧ σSP ↓

sigma S ct command start: truth values of en ⊧ (cmd == start)
sigma S cl command land: truth values of en ⊧ (cmd == land)
sigma S h laser altitude: truth values of en ⊧ Altl ≥ 600

Outputs: Relevant signals of the runtime observer part of the rt-R2U2
phi 1 (sync) output of synchronous observer for flight rule ϕ1

↪ maybe set if output of the observer êval (ϕ1) is maybe, cleared otherwise.
↪ value set if output of the observer êval (ϕ1) is true, cleared if êval (ϕ1) is false

phi 1 (async) output of asynchronous observer for flight rule ϕ1

↪ value set if verdict of the output tuple Tϕ1 .v = true, cleared otherwise.
↪ time time stamp of the output tuple (Tϕ1 .τe)

phi 2 (sync) output of synchronous observer for flight rule ϕ2

↪ maybe set if output of the observer êval (ϕ2) is maybe, cleared otherwise.
↪ value set if output of the observer êval (ϕ2) is true, cleared if êval (ϕ2) is false

phi 2 (async) output of asynchronous observer for flight rule ϕ2

↪ value verdict of the output tuple (Tϕ2 .v)
↪ time time stamp of the output tuple (Tϕ2 .τe)

phi S s up (async) output of asynchronous observer for ϕSs↑

↪ value set if verdict of the output tuple TϕSs↑
.v = true, cleared otherwise.

↪ time time stamp of the output tuple (TϕSs↑
.τe)

phi S s down (async) output of asynchronous observer for ϕSs↓

↪ value set if verdict of the output tuple TϕSs↓
.v = true, cleared otherwise.

↪ time time stamp of the output tuple (TϕSs↓
.τe)

Outputs: Relevant signals of the higher level reasoning part of the rt-R2U2 (only in Fig. 6)
Pr(baro alt=OK ∣ pi ⊧ ϕ) posterior marginal (likelihood of a good barometric altimeter reading)

Pr(baro alt=BAD ∣ pi ⊧ ϕ) posterior marginal (likelihood of a bad barometric altimeter reading)
Pr(laser alt=OK ∣ pi ⊧ ϕ) posterior marginal (likelihood of a good laser altimeter reading)

Pr(laser alt=BAD ∣ pi ⊧ ϕ) posterior marginal (likelihood of a bad laser altimeter reading)

35

...

...0

...0

...

...

0 ns 1000000 ns 2000000 ns 3000000 ns

s_clk

s_reset_n

s_rtc_clock

s_rtc_timestamp ...

Swift UAS sensor data

baro_altitude

laser_altitude

vertical_velocity

euler_pitch_angle

takeoff command

land command

sigma (atomic propositions)

sigma_S_b (baro alt up)

sigma_S_b (baro alt down)

sigma_S_l (laser alt up)

sigma_S_l (laser alt down)

sigma_S_v (vertical vel up)

sigma_S_v (vertical vel down)

sigma_S_p (pitch up)

sigma_S_p (pitch down)

sigma_S_ct (takeoff command)

sigma_S_cl (land command)

sigma_S_h (flight height laser)

phi_1 (synchronous)

maybe

value

phi_1 (asynchronous)

value

time ...0

phi_2 (synchronous)

maybe

value

phi_2 (asynchronous)

value

time ...0

sigma_S_s up (asynchronous)

value

time ...

sigma_S_s down (asynchronous)

value

time ...

27505 ns

628435 ns

2723071 ns

600930 ns

2094636 ns

Entity:tb Architecture:sim Date: Don Jˆ⁄n 10 16:33:16 CET 2013 Row: 1 Page: 1

Fig. 5. Hardware simulation traces for a complete test-flight data of the Swift UAS.

36

10 Appendix D – Hardware Platform

37

...

...

...

...

...

0 ns 4000000 ns 8000000 ns 12000000 ns

s_clk

s_reset_n

s_rtc_clock

s_rtc_timestamp ...

Swift UAS sensor data

baro_altitude

laser_altitude

vertical_velocity

euler_pitch_angle

takeoff command

land command

sigma (atomic propositions)

sigma_S_b (baro alt up)

sigma_S_b (baro alt down)

sigma_S_l (laser alt up)

sigma_S_l (laser alt down)

sigma_S_v (vertical vel up)

sigma_S_v (vertical vel down)

sigma_S_p (pitch up)

sigma_S_p (pitch down)

sigma_S_ct (takeoff command)

sigma_S_cl (land command)

sigma_S_h (flight height laser)

phi_1 (synchronous)

maybe

value

phi_1 (asynchronous)

value

time ...

phi_2 (synchronous)

maybe

value

phi_2 (asynchronous)

value

time ...

phi_S_s up (asynchronous)

value

time ...

phi_S_s down (asynchronous)

value

time ...

higher level reasoning

P(baro_ok | pi|=spec)

P(baro_bad | pi|=spec)

P(laser_ok | pi|=spec)

P(laser_bad | pi|=spec)

4519659 ns

Entity: Architecture: Date: Son Jˆ⁄n 13 15:54:28 CET 2013 Row: 1 Page: 1

Fig. 6. A section (laser altimeter outage) of the simulation traces with health assessment.

38

Fig. 7. FPGA target board (Altera DE2-115)

References

32. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In: LICS. pp.
390–401. IEEE (1990)

33. Backasch, R., Hochberger, C., Weiss, A., Leucker, M., Lasslop, R.: Runtime verification for
multicore SoC with high-quality trace data. ACM Trans. Des. Autom. Electron. Syst. 18(2),
18:1–18:26 (2013)

34. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.A., Hallé, S.: MapReduce for parallel trace
validation of LTL properties. In: RV. LNCS, vol. 7687, pp. 184–198. Springer (2012)

35. Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky,
O., Tillmann, N. (eds.): Runtime Verification (RV), LNCS, vol. 6418. Springer (2010)

36. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric first-order
temporal properties. In: FSTTCS. pp. 49–60 (2008)

37. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time properties. In: RV.
pp. 260–275. LNCS, Springer (2011)

38. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J.
Log. and Comp. 20, 651–674 (2010)

39. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. M. 20, 14:1–14:64 (2011)

40. Colombo, C., Pace, G., Abela, P.: Safer asynchronous runtime monitoring using compensa-
tions. FMSD 41, 269–294 (2012)

41. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University
Press, New York, NY, USA, 1st edn. (2009)

42. Divakaran, S., D’Souza, D., Mohan, M.R.: Conflict-tolerant real-time specifications in metric
temporal logic. In: TIME. pp. 35–42 (2010)

43. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded future. In:
RV, LNCS, vol. 5779, pp. 60–75. Springer (2009)

44. Fischmeister, S., Lam, P.: Time-aware instrumentation of embedded software. IEEE Trans.
Ind. Informatics 6(4), 652–663 (2010)

45. Geilen, M.: An improved on-the-fly tableau construction for a real-time temporal logic. In:
CAV. pp. 394–406 (2003)

46. Havelund, K.: Runtime verification of C programs. In: TestCom/FATES. LNCS, vol. 5047,
pp. 7–22. Springer (2008)

47. Ippolito, C., Espinosa, P., Weston, A.: Swift UAS: An electric UAS research platform for
green aviation at NASA Ames Research Center. In: CAFE EAS IV (April 2010)

39

48. Johnson, S., Gormley, T., Kessler, S., Mott, C., Patterson-Hine, A., Reichard, K., Philip Scan-
dura, J.: System Health Management: with Aerospace Applications. Wiley & Sons (2011)

49. Kleene, S.C.: Introduction to Metamathematics. North Holland (1996)
50. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of

recurrence equations. IEEE Trans. Comput. 22(8), 786–793 (Aug 1973)
51. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer

(2008)
52. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Logics of Programs, LNCS,

vol. 193, pp. 196–218. Springer (1985)
53. Lu, H., Forin, A.: The design and implementation of P2V, an architecture for zero-overhead

online verification of software programs. Tech. Rep. MSR-TR-2007-99 (2007)
54. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-response

properties. In: CAV. LNCS, vol. 4590, pp. 95–107. Springer (2007)
55. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and

continuous behaviors. In: Pillars of Comp. Science. pp. 475–505. Springer (2008)
56. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems. In: RV. pp.

310–324. LNCS, Springer (2011)
57. Reinbacher, T., Függer, M., Brauer, J.: Real-time runtime verification on chip. In: RV. LNCS,

vol. 7687, pp. 110–125. Springer (2012)
58. Schumann, J., Mbaya, T., Mengshoel, O., Pipatsrisawat, K., Srivastava, A., Choi, A., Darwiche,

A.: Software health management with Bayesian Networks. Innovations in Systems and SW
Engineering 9(4), 271–292 (2013)

59. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: To-
wards real-time, on-board, hardware-supported sensor and software health management for
unmanned aerial systems. In: PHM (2013)

60. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal
Methods in System Design 41(3), 236–268 (2012)

61. Thati, P., Roşu, G.: Monitoring Algorithms for Metric Temporal Logic specifications. ENTCS
113, 145–162 (2005)

62. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer
Science, John Wiley & Sons (1987), isbn: 3519021072

40

	Temporal-Logic Based Runtime Observer Pairs for System Health Management of Real-Time Systems -0.1in

